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We investigate the resonant particle production of a scalar fetupled nonminimally to a spacetime
curvatureR (£Rx?) as well as to an inflaton fielh (g%¢°x?). In the case 0§<3x 10 4, the ¢ effect assists
g resonance in certain parameter regimes. Howevergfo8x 10 4, g resonance is not enhanced by the
effect because of thé suppression effect as well as a back reaction effed=If-4, the maximal fluctuation
of producedy particles is\{x?) ma=2X 10" GeV for g=1x10~°, which is larger than the minimally
coupled case witly~1x10"3. [S0556-282(99)00618-9

PACS numbgs): 98.80.Cq, 05.70.Fh, 11.15.Kc

[. INTRODUCTION well as on numerical studig42—14. The important feature
with the existence of the preheating stage is that the maximal
In an inflationary scenario, most of the elementary parvalue of produced fluctuation can be so large that it would
ticles in the Universe were created during the stage of reheatesult in a nonthermal phase transitidib] and make baryo-
ing after inflation[1]. During the inflationary stage, an infla- genesis at the GUT scale possibié], although the baryo-
ton field slowly rolls down to a minimum of its potential. A genesis might be important in much lower energy scale, i.e.,
reheating process turns on when the inflaton field begins tthe electroweak scalel7].
oscillate around the minimum of its potential. The original  So far, we know of two possible preheating scenarios: one
version of the reheating scenario was first considered in this that the inflaton fieldp itself is transformed into many
context of a new inflationary model if2,3]. The particles particles from a coherent inflationary phase through a self-
are created through an interaction term between the inflatomteraction such a& #*, and the other is that another field,
and some fields. A phenomenological decay term to describe.g., a scalar fielgy is created through some coupling with
the fact that the inflaton field decays to other lighter particleghe inflaton such ag?#?x?. Both cases were first discussed
(radiation is included in the equation of the inflaton fiefgf  in [5] using the Hartree mean-field approximation. For the
and the energy of the inflaton is transferred to their thermaformer case, the preheating was studig@?2] by making use
energy. According to this scenario, the reheating temperaturef closed time path formalisifil8—21], since the preheating
is determined by the decay rdfebut not the initial value of is an essentially nonequilibrium state. They analyzed the
¢. The value ofl" is constrained to be small by the pertur- nonperturbative evolution of the inflaton fluctuations for the
bation theory such a§'<10 ?Mp,, where Mp, is the  self-interacting massive inflaton by the method of the
Planck mass, so the reheating temperature is estimated @{N)-vector model in the largét limit as well as by the
T,<10° GeV. This temperature is not sufficient in order to Hartree factorization model, both of which are mean-field
produce baryon asymmetry based on grand unified theoriegpproximations. Th&(N)-vector model has the advantage
(GUT’s). of dealing with the continuous symmetry while the Hartree
Recently, however, it has been recognized that the reheafactorization model is suitable to treat the discrete symmetry.
ing process begins by a parametric amplification of scalafo confirm the mean-field approximation, the fully nonlinear
particles [4—7]. This initial evolutionary phase, which is numerical simulation including the scattering effect of cre-
called thepreheatingstage, provides an explosive particle ated particles was also performed k2] for the simple\ ¢*
production and must be discussed separately from the pertumodel, finding that the varianc(95¢2>~10‘7M§,,_ can be
bative decay of inflaton. There are many works about theroduced by the nonperturbative process of inflaton decay.
preheating stage based on analytical investigafiBrd 1] as  They treated the scalar field fluctuations as classical ones,
which would be justified because the fluctuations with rather
low momenta are mainly produced by the parametric reso-

*Electronic address: shinji@gravity.phys.waseda.ac.jp nance. They found almost the same result as that by the
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*Electronic address: torii@th.phys.titech.ac.jp As for the case only with a massive-inflaton potential
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(m2¢?), the production of the inflaton fluctuation will not Paryogenesis. We will discuss such a combined resonance in

be expected by a parametric resonance. Hence, one usuaff§tail- We also study the evolution gf-field fluctuation

introduces another scalar fieldcoupled to the inflaton field _summed by all pos_S|bIe momentum modes in Qetall mclud_—
¢ through an interaction such g2¢2y2. For the production ing the back reaction effect, because the previous study is
of ¢ particles in the self-interacting case, the coupling iSmalnly devoted to the growth of the zero momentum mode at

constrained to ba ~10~'? from the observation of the Cos- the initial stage of preheating@3].

. . . This paper is organized as follows. In the next section, we
mic Background ExplorefCOBB), while the coupling con- o4y ce basic equations in the nonminimal preheating that

§tantgin_the present case isafree_ parameter. I—_|ence We M3¥cludes the ordinaryg resonance. The results of thg
find a higher production ofy particles depending on the _q 0 case is presented in Sec. lll. We study the analyti-
value ofg. As for analytical investigation of-field evolu-  ¢5 estimation as well as numerical results, and compare
tion, Kofman, Linde, and Starobinsk,8] developed the them with each other. In Sec. IV, we analyze tpe 0,&
consistent theory of preheating based on a Mathieu equatiof g case. The structure of the negative coupling instability is
for the x field. There are several numerical works devoted tanvestigated. In Sec. V, the combined effecigadind ¢ reso-
the evolution of they field by fully nonlinear simulations nance is studied. We present that at which valueg afd &
[13,14. A parametric resonance turns on from the broadparametric resonance become most efficient. Finally, we give
resonance regime in certain values of the couplingrhe  our discussion and conclusions in the final section.
structure of resonance will be modified a lot in the expanding
Universe compared with that in Minkowski space. The am- Il. BASIC EQUATIONS
plitude of the coherent field decreases adiabatically be-
cause of the expansion of the Universe, and eventually the We consider a model where an inflaton fiefdis inter-
resonance terminates. In the case that the couplisgmall ~ acting with a scalar fielg;, which is nonminimally coupled
and the resonance band is narrow from the first stage okith the spacetime curvatui,
preheating, an efficient resonance will not be expected. For
the large coupling constant, the resonance band is broad in 1 1 ) 1 , 1 5,
the beginning, and then we find a considerable production of £~ V=g ;R_ E(V¢) —V(é)- 5 (VX" 5mx
x particles. In this case, the field crosses many instability
and stability bands even within one oscillation of the inflaton 1 1
field, and stochastic resonance occurs. A significant amplifi- — Egzq‘)zxz— §§RX2
cation occurs in the broad resonance regime, but in certain
values of the coupling constagtproduction via such a reso- 21~ a2 , o
nance will be suppressed by a back reaction of created paftherex“/8m=G=Mp" is Newton's gravitational constant,
ticles. When such a back reaction is taken into account, § and £ are coupling constants, amd, is a mass of the
coherent oscillation of the inflaton field is broken due to thefield. V(¢) is a potential of the inflaton field. In this paper
increase of the effective mass of the inflaton, and the energ{y® adopt the quadratic potential
of the y field cannot exceed that of thé field at the final
stage of preheating. Moreover, the rescattering effect, which _ 1 242

. : . . . V(¢)=-m"¢~, (2.2
will also restricty particle production, becomes important at 2
the final stage of preheating.

Recently, another interesting mechanism for preheatingvherem is a mass of the inflaton field, and we use the value
called a geometric reheating model has been proposed f m=10°Mp,_ that is obtained by fitting density perturba-
Bassett and Liberafi23]. They investigated the case where tions to the COBE data.
the y field is nonminimally coupled to spacetime curvatie Since nonminimal coupling between the spacetime curva-
for the massive inflaton model and found that an explosivdureRand they field makes the basic equations complicated,
amplification ofy will be possible if the coupling constagt it is convenient to transform actiof®2.1) into the Einstein
is negative[24]. This is just because of unstable modes withframe by a conformal transformati¢26]. We make the con-

a negative couplinf25]. In this sense, it is different from the formal transformation as follows:

ordinary parametric resonance. In particular, they studied

how the homogeneousg field is amplified and found that a g]W:ngW, (2.3
GUT scale gauge boson with masg~ 10'® GeV can be

produced in the preheating stage whiis largely negative. where Q?=1— ¢x?x2. The Lagrangian density in the Ein-

A natural question may arise: If we combine the effects ofstein frame becomes
both theg resonance and théresonance, do we find a more
effective production ofy particles even in the case whgris -
small? It is of interest how thg-resonance picture is modi- £= \/—_g
fied by taking into account the effect of geometric reheating.

If the assisting mechanism works and the final abundance of
X beqomes rather large, it may change the ordinary_ preheat- — —4(m)2(+ 9%0°) x?
ing picture and affect the nonthermal phase transition and 2Q)

: (2.1)

1. 1 - 1 1 ~
—R———(V 2__m2 2__F2 v, 2
R (V)P Mg SFA(Ty)

, (2.9
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where variables with a caret denote those in the Einstein .

frame, and + 3a+_}7
' ¢ a 1-79

. 1
b+ 1, (MG $=0.

2.1

L 1-(1-606% s 210

(1— éx?y?)? : ' I\!ote that.the fluctuation of the mﬂatpn fielgk) is nc_)t con--

sidered since we assume that the inflaton field is spatially

homogeneous. However, the growth of tlte fluctuation
would be expected to appear as méield is amplified. Our
investigations are limited in the sense that rescattering be-
tween they and d¢ fluctuations is not included.

To make the kinetic term of thg field canonical, we define
a new scalar fielK as

xzf F(x)dy, (2.6) In Eq. (2.11), if we introduce a new scalar field such as
¢=b%g, (212
by which the Lagrangian density is now
whereb®=a3%/(1— ), then the fieldp obeys the following
- 1 . 1 1 . equation:
L=N=g SR~ (V)P =~ mPg?— S (VX)?
2k 2Q 2Q 1 3(2b B2
> 2 2/.,2
1 o 7, (m +9%(x >)_Z(F+E) ¢=0.
~ 5ga (Mt g* X (X |- 2.7 (213

_ _ . _ o Note that in the case of minimal couplirdg=0, » vanishes,

Since we are interested in a preheating after inflation, agence the coherent oscillation of is broken only by a
usual, we shall assume that the spacetime and the inftaton g%(x?) term. As(x?) grows, the effective mass of the infla-
give a classical background and the scalar fielts treated (5, mZ.=m?+g%(x?) gets large, i.e., oscillation becomes

. e 1 By

as a quantum field on that background. In the present modely i This effect, which is called the back reaction effect to
however, there is some problem. We have performed a cofjpe inflaton field, suppresses the resonant particle creation.
formal transformation, where conformal fact®? includes On the contrary, when thé effect is taken into account, 1
quantum variable¢®. Then, in order not to discuss quantum _ 7 is decreasing aéy2) grows, hence one may expect that

gravity, t.he conformal factor should be replaced with SOM&is effect also changes the coherent oscillatiorpoHow-
expectation value. Here, we regard the conformal fafxér ever, as we will see later, this is not the case and we can

as 1-7 [27], where neglect thet effect on the inflaton field in most cases.
s Next, let us consider the equation of thefield. The

n=EkX(X"). (2.9 Heisenberg equation of motion is derived from E2}.7):

(x?) corresponds to the number density of the created . a. . a | ¢? 1

particle, wherg(- - -) denotes an expectation value of some X+ 35X—r9ir?'X— Xloaz ™ —4m2¢>2

functional of y (or X). 20° 20

With such a transformation, we assume that the spacetime 1
and the inflaton fieldp are spatially homogeneous, and adopt - ——(m2+g%¢?)x?|=0, (2.14
the flat Friedmann-Robertson-Walker metric as the back- 204

ground spacetime; _ _
where an index with a roman character denotes space coor-
2 2,22 2 dinates. In order to study a quantum particle creatiory of
=—dt°+ . : : : - :
ds’ dt+ai(tydx 2.9 fields, we make the following mean-field approximation with
. : . respect toX, which provides us a linearized equation for a
Hereafter, as we argue only in the Einstein frame, we drop ﬁuantum fieldx:

caret. The evolution of the scale factlields

i 2
a)Z_KZ 1., s, 1 , 5<+3§>'<—aiaix—v§ %—%m%z
al “3|2a-9? +2(1—77)2m AR ’ ’
_i(m2+gz¢2)<xz> X=0 (2.15
2 , .
+m(m§+92¢2)<X2> , (2.10 20*

where Vy=2\(X?)d/3(X?). From the relation(2.6), we
where a dot denotes a derivative with respect to time coorhave also assumed
dinatet.
The evolution of the inflaton fielg is described by d(V{X?)=WF?d(V(x?)), (2.19
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where (F?)=[1—(1—-6¢&) 5]/(1— 7)%. Expanding the sca- performed a fully nonlinear calculation. To give the initial

lar fields X as conditions, we follow their approach, i.e., the initial distribu-
tion for Y, is described as
1 —ik Ty * ik 3
X=—3/2 (X (t)e™! "‘+ak k(t)e' d°k, 2w, (0)
(2m) P[Y:t=0]= exd —2wi(0)| Yy,
(2.17 ™
(2.249
wherea, and al are the annihilation and creation operators, _
we find thatX, obeys the following equation of motion: andY, is correlated tor, as
. a. |k Y= —iw(0)Yy. 2.2
X+ 3| 5 +G((OA) [X=0, (218 =TT O 229
a

We investigate the x2) evolution with those initial condi-
with tions as the semiclassical problem.
From Eq.(2.19, we easily find that properties of the pre-

) 1 2 2 heating in the nonminimal coupling theory are quite different
G((x >)E(1_ N1—(1—6&) 7] (1+37)(m\+9°¢%) from ordinaryg resonance. First, théx’m?¢$? and £«?¢?
terms cause the resonance, as well as the interaction term
+2Ek2m2 2 — (1—3n) kP2 g°¢? with the inflaton field. These different types of reso-
nant terms either strengthen or weaken the resonance in each
n_ 4+(1-57)(1-6¢) {(1+ ) other, depending on the coupling constants. Secondly, as the
1-n 1-(1-6¢&)7y K x particles are produced significantly, the suppression effect
by the second term in Eg2.19 becomes crucial. This
><(m2+92¢2)+2§K2m2¢2—(1— 7})§K2¢2}} means that in the case of nonminima_ll coupling, we ha_ve to
X consider not only ordinary back reaction effects to the infla-
(2.19 ton field and metric but also the suppression effect by this
term. In what follows, we will investigate these issues in
The expectation values &2 and y? are expressed as detail.

(X?)— izf X2k () izf |k lll. THE RESONANCE BY POSITIVE COUPLING £
2m 2m In this section, we investigate tlp=0, £>0 case. First,

(2.20 however, we briefly review the ordinagyresonance, i.e., the
case withg+#0, é€=0 for comparisor{5,8]. In this and the
next two sections, we mainly study the masslgd&ld. For
the massive case, we will give some discussion at the end of
each section.

If the back reaction of thg field to the inflaton field and
metric are neglected, the inflaton field oscillates almost co-
2 3 ( 2 é2> herently with damping factor B and is approximately de-

k .
w§:;+6(<xz>)— 7 (2.22  Scribed as

Introducing the functiorY, =a®?X,, instead ofX,, we find
Yt 02Y, =0, (2.20)

where

_+_
a a2
¢=>(t)sinmt. (3.1
which is a time-dependent frequency 9f.
At the first stage of preheating when theparticles are  The amplitude®(t) decreases with time as
produced by quantum fluctuation, we find the occupation

number in theY, state by the Bogoliubov transformation as Mp,

. d(t)= . (3.2

wy ) |Yk|2 1 \/37Tmt
== | IYd*+ = = 5. (2.23 _
k Then the time-dependent frequency of the each component
] Y, becomes

However, after many particles are created and each mode
is amplified, they, field could be regarded as the classical K2 K2
field in a good approximatiom3,14]. We may not _have to wﬁ:_2+92¢2: _2+92q)2 si? mt. (3.3
use Eqg.(2.23 at the classical stage. Khlebnikov and a a

Tkachev developed the semiclassical description of fluctua-
tion produced by the inflaton dec@y2]. In fact, they studied We can reduce Ed2.21) to the well-known Mathieu equa-
the inflaton decay by the classical equation of motion andion

063515-4
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A=2q broad range of the momentukrspace. Since the growth rate
Ax wn of the y particle becomes larger with the increase of the
variableq, this resonance gives more efficient particle pro-
duction than the narrow one. This is called the broad reso-
third nance. Note that the initial amplitude of the inflaton field
10 and coupling constang play important roles in deciding
whether resonance is narrow or broad. In theesonance

A=2q/3 case, the allowed region on the Mathieu chart is determined
by Eqg. (3.5 as
A=20. 3.7
second Hence the broadest resonance is given by the limit Ape
/ =24.
/

i ///

’ When g is sufficiently large initially, the resonance of
/ each mode occurstochastically[5,8]. In this case, the fre-
'\/ / cally changes within each oscillation of the inflaton field, so

\\

quencyw, decreases by cosmic expansion anddramati-

L > 17/ q the phases of thg field at successive moments ¢=0 are
not correlated with each other. At the first stage of the reso-
\ first nance, the fields cross a large number of instability bands.
" The periods when they are in the instability band are so short

' that the resonance cannot occur efficiently compared with
that in the Minkowski spacetime. However, nevertheless, the

zeroth A=-2q/3 number of y particles can still grow exponentially. Ag
/ becomes smaller, cosmic expansion slows down, and the

fields stay in each resonance band for a longer time. Vidhen

FIG. 1. The schematic diagram of the Mathieu chart and thedrOpS down to about 1, the first instability band

typical paths for three types of resonance. The lined regions denote 1 1

the instability bands(zeroth, first, second..). Theline of A, 1-q- -@’<A=1+q- =Q? (3.9
=2q is the typical line of the ordinarg resonance, while the lines 8 8
of A,=2q/3 andA = —2q/3 show the lowest limits of the reso-
nances by positive and negatigecouplings, respectively. We find

that the width of the instability bands becomes wider for lagge

The Floquet index in the lower instability band gets larger for fixe

q.

becomes important. When the variables decrease below the
lower boundary of Eq(3.8) by the expansion of the Uni-
qverse, the resonance terminates. We have to note here that
there is another mechanism which terminates the resonance.
When the initial value ofj is large @=3.0x10" %), y par-
42y ticles are produced efficiently and the back reaction onto the
= Tk +[A—2qcos Z]Y,=0 (3.4) inflaton field cannot be ignored. This makes the oscillation of
dz ' the inflaton field incoherent and finally stops the resonance.
That is called the back reaction effect of thefield.
wherez=mt and Now we turn to the case ai=0,£>0. In this case the
resonance occurs by the coupling betweenytliield and the
K2 spacetime curvatur® [23]. The G({x?)) term defined by
Ac=2q+ 2 (3.5  Eq.(2.19 becomes

1
(1=-m[1-(1-6£)7]

2p2 G((x*) =

g (3.6

4m

q= 5
X | 2Ex2m? p2— (1—37) £k 2

k is normalized bym ask=k/m. Stability or instability with

Eq. (3.4 depends on the variables &, and g, which is n 4+(1-6¢&)(1-57)

shown by a stability-instability chatsee Fig. 1[28]. In the Ttz 7 1-(1-6&)7

unstable regiorithe lined region in Fig. 11 Y, grows expo-

nentially asY,xexp(u,z) with the Floquet indexu, and :

particles with momentunk are produced. For smat], the x{2ek*mP gt (1= n)Exe?|. (3.9

width of the instability band is small and fekvmodes grow

by this resonance. This is called the narrow resonance. OWe easily find that ify increases up to the order of unity,

the other hand, for the largg the resonance can occur for a G({ x?)) diverges and the frequency of EQ.22 increases
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to infinity. The resonance seems to continue effectively atillation of the inflaton field, setting an initial time as
the final stage of preheating. However, this is not the case=1/4 as Kofmaret al.[8], we have the condition
Our numerical calculation shows that the resonance termi-

nates whery is much smaller than unity in any case. With

the condition ofy<1, G({x?)) is rewritten as

22 2
G(<X2>)~( il (2 2_ ¢—>

—_— . 3.1
1+6£7)? m? (319

Note that there exists the suppression factof- 6¥7) 2,
which makes the amplitude of the field small effectively.

Even in the case of)<1, we can expect that this suppres-
sion plays an important role whehtakes large values. We
will see later that this effect becomes significant in the case
of £=70. Wheny is small compared with unity, the back

o> @ 3.1
o (3.17
Then the evolution of\, andq is approximated as
2 K
Ak~§q+ ;, (31&
3 1
q~ EPD?~ ¢ (3.19

4(1+6&7)2 (1+6&n)2 27%t2

reaction to the inflaton field and the metric is negligible and

we find from Eq.(2.13 that the ¢ field oscillates almost

coherently.

By using these relations, we can rewrite the equation 0{

Y\ in the form of the Mathieu equation

2

Y
S +[A-2qc0822- @)]Y, =0,  (3.1D
V4
where
UL (3.12)
a2 (1+6£7)% '
2 2002\2
_ V(2p)%+2(¢x*D?) ’ (3.13
2(1+6&n)°
£’ 2 2
p= "7 (P2 1'2), (3.14
_tan*1 ﬂ (3 15
“ 2p+ Ex2d2) '

A prime denotes a derivative with respect 20 Equation

The line described by Eq3.18 lies below the one which is
obtained in the ordinarg resonance. As is studied [23],

he Ricci scalar can be replaced wiif term and the non-
minimal coupling provides another contribution. This is be-
cause the above relatidi3.18 becomes different from the
relation(3.5) of ordinaryg resonance. In fact, we can easily

estimate that without theb? term, &€ must be larger than 0
for the effective resonance, because we have only a similar
coupling term to thg resonance in that case. Since the width
of the instability bands are thick for large(see Fig. 1, &
resonance gives broader resonance and we may expect the
efficient y-particle production. However, as is found from
Eq. (3.19, there are two factors which decrease the variable
g. One is the decrease @f by the expansion of the Universe
and the other is the suppression effect caused by the factor
(1+6£&7) 2, which appears only in thé resonance. Which
factor is more important depends on the paramétand the
efficiency of the resonance, i.ej, When¢é#=<0.1, this sup-
pression effect can be neglected. Note that the back reaction
effect is negligible becausg is always small in any param-
eter. Hence, it may be worth stressing that §iresonance in
the g=0 case will terminate only by passing through the
resonance band, because the coherence of the inflaton is not
broken.

By the final value ofg (=q;) when the resonance ends,

(3.11) is not exactly the Mathieu equation, because it conyye can estimate the tinte when the resonance stops and the

tains the time-dependent phase te#nThis term is due to
the existence ofp? term in Eq.(3.10. If we define a new
dimensionless time parametes mt/27, « is rewritten as

— 4t )

_ 3.1
127%t%—1 (318

a=tan1(

where we used the relatidB.2). Sincet_represents the num-

ber of the oscillation of the inflaton field naivelyy ap-

proaches zero rapidly within the first oscillation of the infla-

ton field. As a result, the time dependencefdoes not
affect the resonance process.

Although the equation off, has the same form as the
ordinaryg resonance except for the time-dependent plase

total amount of createg particles(y2);=(x?);/m?. In the
case ofg=1, particle creation occurs when the frequeagy
changes nonadiabatically, where the condition is written as

2 dwk
a)k<W .

(3.20

Neglecting theb in the calculation in théx2¢? term in Eq.
(3.10, w yields

K2 &Pm?

a® (1+6&7)?

o (3¢2—?), (3.21)

properties of resonance are not the same. After the first osnd then the nonadiabatic conditig®20 becomes
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K2 | 3¢?m? . 68pkPm?

B B A — P2

a2< (1+6§n)2¢¢ (1+6§n)3(3¢ )
§K2m2 5 5
(1+6§7])2(3¢ ®?), (3.22

Let us investigate the value @ when the right-hand side
(rhs) in Eq. (3.22 takes the maximum value. Nonadiabatic
amplification occurs mostly wherp is passing through
around the minimum of its potential | <Mp,), So we can
set¢p~md in Eq.(3.22. Moreover, they term is negligible
compared with the former term, which is confirmed by nu-
merical calculation. Then, Eq3.22 can be approximately
rewritten as

k2
—<<

= (3¢2- D).

(3.23

Differentiating the rhs of Eq(3.23 with respect tog, we
find that it takes the maximal value at

1 mbé 1 /md
¢max=@ C_m% P C_l/zy (3.29

whereC=3¢x?m?/(1+ 6£7)2. Then the maximum value of
momentum yields

3¢K2me r’g £xc2m?
(1+6&n)? (1+6&n)?

Eﬁ‘:c;q)2_|_(24/3_1)@ (3.25
a>  3m? 4m ’ '

where k2,_,=k2_/m?. As we have the relation/Cd/m
=2.q by Eq.(3.19, the maximum momentum is rewritten
in terms ofqg as

.
Knax 4 ;s 1 4 3
?—gq—(Z -3 JE~§q+ ZJE. (3.26

This equation gives the maximum momentum for the reso
nance. The resonance terminates when the varid@lesdq
pass the curve of

1
A=1-g- g, (3.2
in the Mathieu charf28]. Combining the relation$3.18),

(3.26, and(3.27), we obtain the equation with respectdp
as

0%+ 24+ 6/q;+8=0, (3.29

resulting ing;=0.2165=1/5. If we adopt the typical mo-
mentumk, , which would be defined as

Kk, =—me (3.29

PHYSICAL REVIEW [B0 063515

instead ofk,,,,, we find

302+ 56q;+91/qs+24=0, (3.30

andqg;=0.3353~1/3.

The analytic expression of E¢3.28 or (3.30 is only an
approximation because the maximal momentuyy, will be
changed whemy drops down tog<1. However, it gives a
good agreement with the numerical calculations. First, we
examine the evolution ofy?), comparing the results of the
numerical calculations with the analytical estimation. Eor
=10, the numerical calculations show no effective produc-
tion of {x?). This means that the initial value gfis so small
and it decreases so fast because of the expansion of the Uni-
verse that the field does not stay in the instability bands for
enough time. For 18¢=<70, the resonance occurs because
the period during which thg field stays in the broad reso-
nance band becomes longer. For example, in the cage of
=50, the value of x?) first increases exponentially by the
passage of time and reaches its maximum vayé)
=3.090< 10° at t;=2.85[Fig. 2a)]. Although{x?); is not
large enough for the efficient preheating, the parametric reso-
nance evidently occurs. Since the maximal valuet gf is
Eme~1.9<10"4, we can ignore the suppression factor (1
+6£7) 2 in Eq. (3.19. Hence the resonance is terminated
by the expansion of the Universe. The final valuegodb-
tained by the numerical calculation ¢g=0.312, which is
almost the same as the analytically estimated value with the
typical momentunk, . In the case that the suppression ef-
fect is neglected, we can estimate the time when the reso-
nance ceases by

T/ /X
=\~ Vooz (3.3)

For the case SEZ 50,t_f=2.76, which is close to the nu-

merical valuet;=2.85. After (x?) reaches its maximum
value, it decreases monotonically. This is the adiabatic
damping due to the expansion of the Universe.

In order to see the& dependence of the numbers of cre-
ated particles, we depidty?); in terms of ¢ in Fig. 3. It
shows that although the created patrticle first increases as the
coupling constang gets large, it rather decreases beyond a
critical value&,., which can be understood as follows.

When ¢ is less than about 10Qx?); increases as the
coupling constan€ gets larger. This is just because the ini-
tial value ofq is larger and then the resonance begins in the
broader bands. For #¢=200, the suppression factor be-
comes important. Thé=100 case is shown in Fig(ld. At
the first stage(x?) increases rapidly with the larger growth
rate than the case wit§=50, but it reaches its maximal
value (x?);=9.550<10° soon. Since¢n;=0.240 at the
maximum point, the suppression effect by &¢7) ~2 can-

not be ignored. In Fig. 3, we find th&k?); is almost flat
around~ 10° in the parameter ranggé=100—200.
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FIG. 2. The evolution of x?) as a function oft in the case of
g=0,£>0 [(a) £€=50, (b) £=100, and(c) £€=1000Q. We find that
the parametric resonance occurs by the posiﬁu&nupling.(?)
increases exponentially and reaches its final v . Then, it

decreases by the adiabatic expansigﬁ?)f takes the maximal
value for é~100. For large (£=100), although the growth rate

becomes large, the final valuj?)f is suppressed by thén term.
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FIG. 3. The final value of x?) as a function of in the case of
g=0,>0. For 0= £<100, (x?); increases ag increases because
the initial value ofq gets large. For 108 ¢=<200, (x?); takes its

maximal value ¢10f), and for £=200, (;2>f decreases by the
suppression factor as £~

For £=200, the suppression effect by largeis more
effective than the increasing df?). At the first stage of

preheating, the growth rate Q?Z) becomes larger with the
increase of¢ [Fig. 2(c)]. However, the resonance soon ter-

minates with the smaller final valyg?); than in the case of
£~100 by the suppression effect. For example, in the case
with £€=1000, (x?);=8.318<10%, and &7;=2.090 at t;
=1.31, which is much smaller than the amount in the case

with £€=100. In fact,(?% decreases monotonically by the
suppression effect beyorid~100-200(Fig. 3). In the case

of £=200, we can estimate the value @f?); as follows.
Assuming that the mode with the typical momentlg is

the leading mode of the growth ¢%2), we can rewrite Eq.

(3.19 as
—. _(Mp /m)? 3¢
2\ _ _
(X prae (\/2772?? 1), (3.32

at the maximal point. In our numerical calculation, we find
thatt; is well approximated by the constant value 1.31 when
& is greater than 500. Thefiy?); decreases as

(xP)c &%, (3.33

which is confirmed by our numerical result given in Fig. 3
for £=500.
In Table |, we also show our numerical results and the

estimated value$3.32 for the maximal valugx?);. The
present analytical estimation gives a good approximation to
the numerical results. A small difference between those may
be due to the naive condition of E(8.20. If we take into
account all momenta larger thdq, , we will obtain the
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TABLE I. The final values<;2>f obtained by the analytical final value of <;2> in the case ofg=0,§=200mX=m
estimation and by the numerical calculation in the casgeD.{ s about 16, which is almost the same as the massless case.
>0. The analytical estimation gives a good approximation to theqowever, foré< 1000, it is difficult to have a resonant pro-
numerical results(x?)numericaitakes the maximal value @~100.  duction of y particles with the mass larger than 100 m
We also show the timé; when the resonance ceases gndwhich  (~10' GeV), because the relation betwepandq devi-
indicates a suppression effect. For lagethe suppression effect ates from the resonance bands due to the mass term. Yvhen

[a~(1+6&7)~?] becomes crucial. is much larger than 1000, although it is not likely, we still
— — — expect production of a massive particle whose mass is of
§ t (XPanayic  (XDnumericar € numerical order 16° GeV at the initial stage of preheating. However,
as the production of thg particle proceedss» suppression
20 1.85 8.610 8X10° becomes efficient for such a large valueéofresulting in a
50 2.85 3.09%10°  1.9x10°*

small total amount o(?). Namely, massive-particle pro-

0 285 3.75610° 4.6x 107? duction is possible whe# is sufficiently large, but the final
100 2.40 413810 9.550<10° 2.4x10 amount ofy particles gets small by thén suppression ef-
500 131 151310°  2.109<10° 13 fect. Whether or not such a small amount of production can
1000 131  562810"  8.318<10° 2.1 still provide us the baryonsynthesis is another problem,
10000 131 1.92210°  2.630<10° 6.6 which we do not investigate here.

_ IV. THE RESONANCE BY NEGATIVE COUPLING £
larger values of X2>analyticr where the estimation gives a . ] ) )
value closer to the numerical one. Next, we investigate the case g&=0,£<0. Sincen is
Finally, we should mention the effect of a mass of jne Small compared with unity as we will see later by numerical
field. In general, the mass effect of thefield works as a  calculation, we can use the Mathieu equati@®d1)—(3.15

suppression factor, because the relation betwgeandg in to analyze our numerical results in this case as well. Neglect-

Eq. (3.12 is modified as ing the® term, the relation betweefy, andq is now
2 K
k? 2 m? __c..©
A=t — P T (3.34 A= 3at 5 4.
a? (1+6&p)?2 m?
) o where
However, since the resonance band is wide€ iresonance
compared withg resonance, the effective production pf 1 H
particles is still expected even if the mass term is taken into q~ 5T o (4.2
account. In fact we have found that if the mass is order (1+6&7)° 277t

3 .
10 QeV (namely, the same order of the inflaton mass Note thatA, can take a negative value because of the nega-
X p:ggclf slg(r)e é:(r)%atgr%:seszr:qel:s_the_rr;ar\]ss_:]eslzs_ Caii\.’rvﬁgtﬁ]ve couplingé. This fact makes the properties of resonance
'S u e xampie 1S given in Fig. <. quite different from the case @f>0 as was pointed out in
Ref. [23]. In the regions ofA <0, a new instability band

g=0, §=2OO, my =m (zeroth instability bandextends below some curve which is
L A B B approximated byA,~—q?/2 whenq is small (see Fig. 1
One of the important features is that this zeroth instability
band reaches, =0 in the limit of g=0. Consider the modes
with very small momentumk. The line of Ay=-2q/3
crosses to the curvd,~—q?/2 atq~1.4. Hence, even if
evolves below unity by the expansion of the Universe, there
remain some unstable modes in this instability band. Since
the Floquet indexw, of this instability band behaves as;
~ /g whenq is small, resonance continues to occur ugtil
vanishes. Moreover, most of ti#g <0 region is covered by
either the zeroth or higher instability bands. Almost all
Y ) SN RSN S AR SR S modes contribute to the resonant process in almost all the
time with a high growth rate. Hence, one can expect the very
- effective particle production.
We show numerical results for the evolution @f?) in

FIG. 4. The evolution of y2) as a function oft in the case of ~Fig. 5. Foré=—20, ¢ takes initially the value~16 and

g=0,£=200m,=m. The significant production of massiyepar- modes are either in the first or in higher instability bands,
ticles of orderm~10" GeV is expected by the positive reso-  depending on the momentum. However, after the first oscil-
nance. lation of the inflaton field,q decreases to-1 and some
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FIG. 5. The evolution of x2) as a function oft in the case of
g=0£<0 [(@ é&=-20, (b) ¢é&=-50, and(c) £€=—-100]. (x?)
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modes enter into the zeroth instability bag?) increases
exponentially mainly by those modes during the first several
oscillations of the inflaton field. Thereafter, the growth rate
becomes small andy?) approaches the constant value
(x?);=4.1x10". At this stage, the production of particle
balances with the dilution by the Hubble expansion. Eor
=-100, (x?) increases more rapidly than the case&of

= —20 at the first stage and reaches to its maximum value
(x?)¢=4.4<10° at t=7.7. The main growth ofx?) occurs

until t=2, whenq is of order 1. Aftert=2, the x field
enters the zeroth instability band, and the increaséxj

stops att=7.7. After that,(x?) takes almost a constant
value. This behavior is universal for the case w§#i0. To
understand the present results more deeply, we shall estimate

the value of( x%).
From the relationg2.16) and (2.20, we can obtain the
following relation:

d 2_1/<X2>ii 2y_ 2
-
- —7E§—mQM 3H), 4.3

where we have used the expressiorf)=a®(x?)~e*™

with u being the Floquet index antd=H/m. The growth of

(x?) stops when the rhs vanishes, i.e., when the dilution
effect by the expansion of the Universe surpasses the particle
creation rate. Neglecting the back reaction effect on the met-
ric, the evolution of the Hubble parameter is approximately
written by

0 4o O 1 4.
3 MpL 37t '

While, the relation betweep andA in the zeroth instability
band can be written bj28]

(A—l)q2 1/2

2(A-1)*—¢?

m~ (4.9

Considering the modes which are close to the lineAof
= —2q/3, the Floquet index is given as

29 1 i1
PN 3" Tr6en V3 o 49

Until {x?) reaches its maximum valug, decreases faster

than 1t by the existence of the suppression factor 1/(1
+6&7). Because of this behavior, the Hubble expansion,

which decreases as 1/t, will catch up with the inflaton

increases exponentially in the first stage by the parametric resadecay, and then the preheating is terminated. Namely, the
nance and reaches to its final valye); . After then, it approaches main factor which stops the growth ¢£?) is the production

a constant value because of the creation rate ofytiparticle and

the expansion rate of the Universe balance.

of {x?) itself. Substituting Eqs(4.4) and(4.6) into Eq.(4.3),
the growth rate of x?) is approximately given as
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d <X2><X2> m 1 4[¢] TABLE II. The final value(y?); obtained by the analytical es-
d_<X2>~ > :[1 6 \/ 3 1}, timation and by the numerical calculation in the casegefO, ¢
t (F?) wt[1+6&7 <0. For |£]=4, both values show the same tendency that)

(4.7 gets large for decreasirlg|. However, for|£|<3, the analytic es-
timation by Eq.(4.8) cannot be appliedsee text for the detail

X2) numericartakes the maximal value gt~ —4.

When the term in the square brackets vanishes, the growth
{x?) ceases. By this condition we find the final valug gf)

as — — —
§ ty <X2>analytic <X2>numerical |§| TTnumerical
— Mp /m)2| 4
<X2>f:( PL 2) [ \/ f' 1. 48 -2 7.5¢10°  1.049<10° 3.184<10° 3.2x10°7
48m¢ -4 3.3x10° 5.425<10° 3.162<10° 1.3x10°*
, -10 1.0<10° 1.758<10° 1.122x1¢® 2.8x10°1
2

Note that the f|2nal value Oﬁf_X ) depends on onl¥, but not _20 28.28 6.90% 107  4.130¢1F  4.2x10-1
on ty. Once(x) reaches its maximuny andH both de- ¢ 1526 1898107 1.099<10°  6.9x10-1
crease as 1/ Note that in the case @f=0,£>0, the depen- _ 100 7.66 6.99%10° 4.355< 10° 1.1
dence ofu is u~q~1/t*> whenq is close to zero and that —1000 4.61 2.35510° 1.606x10° 4.0
(x?) does not approach the constant value but adiabatically- 10000 4.18 7.59%10° 5.069< 10° 12.7

decreases by the Hubble expansion.
From Eq.(4.7), we find that the resonance does not occur

in the case of &¢|<0.75, and this is confirmed by numeri- merical values of(_z) for various cases. We find that the
cal calculation. In this parameter range, the growth gats . > Ohx e T '
analytical estimation gives a good agreement §et —4.

Il d with the Hubbl i te. By E ; .
smatl as compar;} ivzl © uk eh expangor: rale y the small discrepancy comes from the fact that we mainly
(4.8), we guess thafy”); may take the maximal value &t ¢ hqjgered the modes closekte:0, which gives the largest

z_<1'33' Howeve;r, this is not the case actually. I_n thé contribution in most of the stages. Also, since the actual
=<§=—1 case, since the creation rate of theparticle is 1 ppje parameter is larger than is estimated by @),

small, it takes more time to complete tlyeparticle produc- . . —
tion. As time passes, a contribution of produgggarticles this decreaseithe estimated value(gf);. Note that the

to the Hubble expansion rate becomes comparable to that §nal value of(x?)=3.162<10° até=—4 is larger than the
the inflaton field, and the estimati@d.8) cannot be applied. maximal value in the case @=0,£>0 ((x?)max—10° at

The growth of( x?) stops before théz suppression effectin  §=100-200). Since the resonance bands of the negative
Eq. (4.7) becomes significant. Hence, fer3<¢<—1, al-  coupling are broader than those of the positive coupling in
though they-particle production is possible, the final abun- the previous section, the moxeparticles are created and the
dance of they particle is not so large. For example, in the final value of(x?) becgmes larger. However, when the value
§j —2 case, the numerical value of the final abundance i%f |¢| becomes largd,x?); decreases 4§r|—3/2, which is the
(x?)¢=3.2x10% which is much smaller than the estimated same as the positive coupling case. We c_onclude that the
value (x%);=1.0x 10° by Eq. (4.8). On the other hand, for suppression effect controls the final value(gf) for large
¢=-3, the 7 suppression effect plays a crucial role in [£] in the ¢-resonance case. _

teriminating the increase dfy2). Numerically, (x%); takes When the mass of thg field is taken into account, the
the maximal value x2)max— 3.2x 10° at t;~3.3x 10° when resonance is suppressed as in the casg=a0,£>0. How-
&~—4. In this case, although the growth rate is still small €Ve": SNce the resonance band is broader than thoge of
compared with other cases @5 0,6=0 andg=0,¢>0, the =0,£>0 case, we expect considerable productiory qfar-

i . _ S = . ' ticles for ¢£<0. One important property in the negatie
final fluctuation is large. Fog=—4, (x“) continues to grow s s that the massiyeparticle is hard to create once the
until x particles are significantly produced, and finally the , fie1q enters the zeroth instability band. This is because the
&én suppression effect terminates the resonance. In the

field deviates from the zeroth instability region by the
cases, the analytic estimation based on @) can be ap- y reg y

_ —, mass effect. Even in the case & —20—-—30 when mass-
plied. By Eq.(4.8), we expect tha(y?); decreases as the |oq5 particles are effectively produced &g2);=5x 10,
decrease of (< —4). For example, numerical values of the

: _ - massivey-particle production is strongly suppressed because
final fluctuation are(x?);=1.122x10° for ¢&=—10 and the y field deviates from the zeroth instability band soon
(x?){=4.130x 10’ for é=—20. In£=—10 case}; is about  after the first oscillation of the inflaton field. For example, in
t;~1.0x 10° and the growth rate ig~0.001. Foré=—20, the case ofj=0,&=—30m, =m, we find(x?)¢~10°, which
the growth rate increases up (0o~0.1, and the resonance is not an effective resonance. Rather, in the casg=00,§
ends att;=28.28. In the case df¢|>1, the resonant time = —100-—200, in spite of thef» suppression effect, the
becomes very short by this suppression and the final value gfroducedy particles exceed more tha?);=10° for m,
(x?) is reduced. Equatioft.8) shows that x2); decreases as =M (Fig. 6). However, ifm,=10m, it becomes difficult to
|&] 32 for |£]>1. produce more tharfy?);~10° even for é= —100—— 200.

In Table I, we show the analytically estimated and nu-We show in Fig. 7 the final abundance of thearticle as a
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g=0, F’: _200, m, =m V. THE COMBINED RESONANCE
A e L B I L B In the previous two sections, we have shown that the non-
g 1 minimal coupling will give rise to the parametric resonance
6 F N ] depending on the value of coupling consténHere we shall
5 ] investigate a combination aj resonance and resonance
] (the combined resonancéVheng+0, the g?(x?) term in
, 4 . the equation for the inflaton fiel2.13 becomes important
In<y™> : at the final stage of the evolution and changes the effective
3 1 mass of the inflaton field. By this back reaction effect, the
5 ] production ofy particles is suppressed. Similarly, produced
] x particles will affect the metric by the coupling between the
1 i x and inflaton fields. However, first, in order to examine the
¢ ] naive structure of the present system, we shall rewrite the
ot b Lo b L equation for they field under the condition of?(y?)<m?
0 5 10 15 20 25 30 and »<<1. With Egs.(3.1) and(3.2), the equation for the
i field is reduced to the form of the Mathieu equati@11)

- - with Egs.(3.12), (3.15, andq andp being defined as
FIG. 6. The evolution of x?) as a function oft in the case of

g=0,¢=—-200m,=m. The final value of(x2);~10°% is larger q= V(2p)? +(g* D% m*+ 2k D) Ex*D? 5.1
than the case of=0,6=200m, =m. 2(1+6&7)? ' '
function ofm, for {=—1000 case. In this case, we find that )
the x particle whose mass is more tham~100m canr_lot be p= E g'® + EPD2— EPD 2 | (5.2
created. In order to produce the GUT scale particles ( 4\ m?
~10°m~10'® GeV), the value ofA, is more thanA,
=10° sincem?/m?~10° in Eq. (3.34. This means that the With the condition(3.17), A, andq are rewritten as
resonance does not happen at all from the very beginning o
unlessé< —10° (note q~|¢&| initially). Moreover, wher|¢| k? 9°d2Im?+ £k’D?
is extremely large such &~ —10°, the y particle with the Ak~ ;“qu G202 M+ 3Ek2D?
mass of order 8§ GeV can be created initially, but the final
ampunt will be Iar_gely reduced by they suppression effect. K2 g2+ 87E(M/Mpy)2
As is the same with thg=0,£>0 case, whether or not such ~—+20— o7 (5.9
a small amount of production can provide us the baryonsyn- a g%+ 24mE(m/Mpy)?|
thesis is another problem. We then conclude that for the
massive case, effectivg-particle production is expected _ 1 g’®? 92
when they field does not deviate from the instability bands a= 2 2 T3k ®
I . . 4(1+6&n)°] m
initially and the&# suppression effect is not too strong.
1000 Ml 24 é( ; )2 (5.4
T ~ — TE 7| |- .
) g case 4873(1+6£7) 22| MpL

On the Mathieu chart, there are two quantities which de-
termine the efficiency of the resonance. One is the initial
valueq; . This determines the Floquet index, i.e., the growth
rate of they particle. It becomes large gsand¢ get large as
seen from Eq(5.4). In general, if we can neglect the back
reaction effect, we expect more efficient resonance for large
g; - Another quantity is the gradient of the line on which the
variablesA, andq trace during the evolution of the system.

It determines how many modes contribute to the resonance.

=
A
bl
[3*]
Y
[\]

0 g In the present case, the gradient is given by the ratié tf

I SR AT SRS S S S —— g. In the minimal coupling cas&=0, so the typical line is
0 20 40 60 30 100 A= 2q. In the nonminimal case, however, there are several
my/ m types of lines which show different behaviors. Then we shall

o . first classify the Mathieu chart into several regions by chang-
FIG. 7. The final value of x?) as a function ofim,=m, /min ing g/g2 from o to — (see Fig. 8 When g/gzzoo, the
the case of=—1000.(x?); decreases aEX increases, and para- resonance is similar to the positiéeresonance discussed in
metric resonance cannot be expected _muy?.loo (namely, for ~ Sec. Ill. When &< £/g?<, the resonance occurs below the
m,=10"° GeV). A =2q line. We call the resonance in this parameter region
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32= L(M,,)z g2+3E_,1<2m2>0 =—(MPL/m)2/167T, the typical Iin(_e isA|_(=2q, which is the
g uninm same as the ordinary resonance in spite of the existence of
6 & coupling. The parameter range(Mp, /m)%/12m<&/g?
sy <0 £>0 <—(Mp./m)?/167, corresponds to the region between
4 (broad) /- ew-broad) _2 A=2q andA,=2q/3, and the system enters the new-broad
- resonance region again. Asg® gets smaller further, and
3 (g%:infmjty) q enter the region ofA,<2q/3. We call the resonance in
2 this region the “wide resonance.” When ¢&/g?
Ax . <—(Mp_/m)?/8m, the gradient becomes negativélg?
= —oo corresponds to the negatideresonance discussed in
0 Aved the previous section. In what follows, we will examine each
1 : =< of the cases one by one, in detail, paying attention to which
(§z= 0) parameter range ig coupling assists thg resonance.
-2 Before proceeding to the individual investigation, we
3 shall give some criteria for the back reaction effect on the
4 inflaton field and for the suppression effect by w term.
70 1 2 3 4 5 6 7 8 9 10 (1) For the back reaction effect on the inflaton field, we
(a) q shall adopt the criterion
) .
g§2=_24+n(%r) g2+ 3§K2m2<0 g2<X2>SO.1. (5.5
6 _
\ If the (x?) exceeds this criterion, the back reaction becomes
3 (broad important. In the case aj# 0,6=0, our numerical analysis
4 | ©road) Ak=—q shows that this criterion corresponds to the conditiorg of
=3x10%
3 (&2 12n(—")) (2) For the&n suppression effect, we adopt the criterion
2
Ac £n=0.1. (5.6
(wide) ) ) )
) We will see that those effects are crucial for the effective
1 x-particle creation at the final stage of preheating.
-2 q (_ —-mﬁmt)) A. £>0 (new-broad resonancg
-3 This case corresponds to the parameter range,
40T 23 34 56 7% 9D s 2 2
(b) q §q+ ;<Ak<2q+ ;, (57)

FIG. 8. The relation betweeA, andq in the case of the com-

bined resonance of and ¢. (a) As ¢/g? decreases frome to  on the Mathieu charfiFig. 8@a)], and the resonance band is

—(Mp,/m)?/247, the relation changes from,=2q/3+k%a?to  broad compared with the usugiresonance case. We shall

q=0 as the arrow in the figure. We call the resonance in eacldiscuss the following three cases separately.

parameter region the following.<0£/g?<« is the new-broad reso-

nance, and- (Mp, /m)2/247< ¢/g?<0 is the ordinary-broad reso- 1. g<3x107* case

nance. (b) As ¢lg* decreases from_(MPL/TZ)Z/ZA'” o —=, In the case wheré=0, i.e., the ordinarg resonance, the

the relation changes from=0 to A= —2/3q+k®/a’ as the armow  \yigen of the instability bands are small whep<3x10 4.

'?l the f'?u”re shows. We &a"/the;/eféonan?e in eac,:\? pellram/eztzr redi%he y particles are actually created only in the first instabil-

the ollowing.  —(Mp /m)*/16m<¢/g *<—( JL m)® , ity band, and the resonance occurs in the narrow band from

is the ordinary-broad resonance,—(Mp /m)</127<§lg o . .

<—(Mp_/m)?/16m is the new-broad resonance, ardo< &/g? the. peglnnlng. A.S a result,. thﬁ. particle is not produced

< (Mp_/m)2/127 is the wide resonance. efficiently. By tak|_ng§ co_upllng into account, however, the
resonance is assisted since the initial valuegdfecomes

the “new-broad resonance.” Whef=0, resonance occurs larger and the resonance band becomes broader as seen from

only by g coupling:A,=2q+k?/a? and the ordinarg reso-  Egs.(5.3 and(5.4). In order to obtain y?);~10°, we need

nance is recovered. § becomes negativéy, andq enter the the coupling constanf=100-200. Because the resonance
region of A,>2q, and we call the resonance in this param-occurs mainly by¢ coupling, the properties of resonance are
eter region “ordinary-broad resonance.” Whe#/g? almost the same as in tlge=0,6>0 case. For fixed valug,

=—(Mp./M)?/247, q vanishes and no resonance occurs.we find thatg makes the resonance band narrower and the
As ¢/g? decreases further, the gradient gets smaller and theesonance less effective, although it makes the initial value
resonance becomes broader again. Whet/g® of g larger. In fact, the numerical calculation shows that
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(x*)+ with g is smaller than that withowg and its growth rate g=3*10'4, € =0
of (;2) is also smaller. In this sensg coupling weakens the I R S Y R E
£ resonance. In this parameter region, the back reaction ef 5 VN\VA AN
fect on the inflaton mass is negligible and the suppression by b ﬂ V V .
. . . 4 F .
the ¢ term terminates thg-particle production. s 3
3 .
2. g~3x107* case In<i®> 5 &
In this case, we find from Fig. 9 that the resonance is 1
divided into two stages as in the ordinagy resonance, . | .
namely first the broad resonance regime and then the narrov 0 L Ml 3
resonance regime. We add the suffig’*‘on to the variables 1 Y ! ;
just after the broad resonance regimed gandqy, . Although 2 : N I B B "
the resonance starts from the broad resonance region even 0 5 10 15 2 25 30

the £=0 case, the resonance band becomes broader by adt -

ing the & coupling. Furthermore, the initial value of be- (@ t

comes large as seen in E§.4). Since more mgdes contrib- _3%10" g _ 50

ute to the resonance, both the growth ratggf) and the p &= >R

value of (x?), get larger(see Fig. 9 and Table )I This 3

means that th& coupling supports thg resonance well in 5

the broad resonance regime. After the resonance enters th 4
3
2

aAR A A AN A AN AN A

AR RA LS

narrow resonance regims?% 8), the growth rate hardly de-
pends oné. At the final stage, however, we cannot neglect
the suppression effect by the; term. As¢& becomes large,

In<y*>

the variablesA, andq cross the lower boundary of the first 1 hUA I

instability band at an earlier time and the final valud pf); 0 ' |

. . . . . il

is suppressed a little compared with that in the ordingry *‘U\W I

resonance. In this case, the back reaction effect is marginally -1 3

less important. 5 -SSP RPRFIN EVATINIS SRVIVIT ST R
. 0 5 10 15 20 25 30

3. ¢>3x107" case b) h

In this parameter region, the back reaction to the inflaton
field should be taken into consideration. In the caset of g=3%10", & =100

=0, y particles are produced quite effectively in the broad 6 —— g
resonance regimes an@l®); takes the maximal value 5 : W P AP ;
{(X?Ymax=5.0x 10" for g=1x 103, in which case the initial : V V VWW VVV VVV
value ofq (g;~1.075<10% is large enough as estimated by 4 s Al E
Eq. (5.4). As g increases, the back reaction tegf(x?) , 3 1
gives a significant effect even when the small valuggh ~ 1P<X™> 5 & vl :
and(x?); rather decreases. Even if we takeoupling into 1k M .
account, it does not change the growth rate at the first stag: s ]
of the resonance very much whgtis large(see Fig. 10 For 0 Ay ]
example, in the case gf=1.0x 10~ and&= 100, the initial -1 F ]
value estimated by Eq5.4) is q;~1.083< 10%. This is al- ) T N T T

most same as the case §£0. Furthermore, the relation

betweenA, and q is A,~1.99+k?/a?, which shows also

the same broadness. Hence the initial stage of the resonance
is governed by theg coupling. In order to find the effect of

the ¢ coupling, we may set very large ¢=10* for g=1
x1073). Such a large¢ coupling, however, causes ex- o o
tremely strong suppression and we do not expect the efficient FIG. 9. The evolution of x?) as a function oft in the case of
resonance. In the final stage, either the suppression effect ly=3.0x10"* [(a) £=0, (b) £=50, and(c) £=100]. We find that

&7 or the back reaction effect terminates the resonance déhe resonance is divided into two stages; one of which is the first
pending on the coupling constargsind £. Generally speak- broad resonance stage and the other is the narrow one. The growth
ing, when¢ takes a large value, the suppression factor berate in the broad resonance stage becomes larger for largtaw-
comes important before the creatgdparticles cause the ever, the final valuéx?); is suppressed by then term.

(=
W
—
(=
-l
W
[\
(=
[\
(7.}
(93]
(=
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TABLE Ill. The numerical result for the broad resonance in the g=10-3 g =0
g=3x10 * case.t, and(x?), are the values when the broad reso- 8 = ’ S
nance regime end¢x?), gets larger for largeé because the reso- 1 TAVa Ve SN

nance band becomes very broad. Howe‘@%}f turns out to be 6 | A i
smaller for large¢ because of the suppression effect, although it - " .
does not depend oé so much. A

— — — — ) -
§ ty (Xb ty (X In<y”> i i
i

—-20 6.26 3.019 14.36 2.9510°
0 6.26 5.495 14.36 7.24410°
50 6.26 3.16X 10 12.85 6.308 10°
100 6.26 2.34% 107 11.88 457X 10°

significant back reaction. Using the two criteria.5 and (a) t

(5.6), we can estimate a rough dependence. Once the create 3

particles exceed one of the criteria first, the resonance will g=10", &= 50

terminate. Since the rhs of these criteria are the same, com 8 T
paring the Ihs terms, two effects become equivalent when I

2 m | 2

g°=8m & (5.9
MPL -2

In<y“>

Hence, ifg>>8x(m/Mp,)2£2, the back reaction terminates 2
the resonance. Otherwise, the resonance is terminated by tk I
suppression effect. This estimation has been confirmed by o |
the numerical calculations. As a result, it is difficult to create
x particles more thagiy?);~5.0x 10" even if & coupling is
taken into account.

_2>|I|| N N Y T T S Y T YO Y S O O

B. —(Mp/m)?/16m< &/g2<0 (ordinary-broad resonance

As we can see by Ed5.3), both terms ofg and ¢ sup- g=10'3, E,. =100
press the instability in this case. The gradient ofdh&, line I L L [ LB B O B NN
becomes steep, and this parameter range corresponds to tl - -
region between the line &,=2q+ k?/a? andA, axis in the 6 AAEVEDIIN,
Mathieu chart. This means that the resonance occurs in nar I
rower bands than that in the case&#0. In particular, for 4 L
&g%=— (Mp /m)?/24m, the variableq vanishes. Since the In<¥>
width of any instability bands vanishes f84>0, the reso-
nance does not occur at all although bgtlcoupling andé
coupling exist. As for the initial value af, both terms ofg I
and ¢ suppress it as seen from E&.4). As a resulté cou- 0r
pling always suppressegsresonance in any parameter range.
This effect is remarkable whemis small. However, for large Y
g, ¢ terms are negligible because both the gradient of the 0 5 10 15 20 25 30
g-Ay line andq; depend on the square gfwhile they de- -
pend linearly oré. Hence the properties of the resonance are(c) t
almost the same as those in the ordingryesonance ifg
>3.0x<10 * and 0<|¢<100.

2 2 2 FIG. 10. The evolution of y?) as a function ot in the case of
C. ~(Mp /m) fL2m<g/g"<— (Mpy [m)"/16m g=1.0<10"3 [(a) £=0, (b) gi"sé, and(c) £=100]. The broad and
narrow resonance stages are not distinguished. The growth rates are
This parameter range corresponds to the regions betweeiimost the same for eagh because the resonance occurs mainly by
A=2q+k?/a? and A,=2q/3+k?/a? on the Mathieu chart g coupling. Whenx?) reaches its maximal value, the back reaction
[Fig. 8b)]. The resonance gives the same broadness as tledfect terminates the resonance.

(new-broad resonance
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TABLE IV. The numerical result for the new-broad resonance  TABLE V. The numerical result for the wide resonance on the
on theA,=2q/3 line on the Mathieu charg does not take a large A,=0 line on the Mathieu chart. The resonance occurs mainly by
value for this parameter range éf The effective resonance is ex- the ¢ coupling. The effective resonance is expected only|fr

pected only forf&|>200. >100.

¢ g (X ¢ 9 (X
-20 2.745¢107° -20 2.241x10°°

-50 4.341x10°° -50 3.545¢107° 3.981
-70 5.137% 10°° -70 4.194< 1075 1.016x 104
—100 6.14<10°° 5.012x 10 —100 5.01%10°° 3.206x 10°
—200 7.08%10°° 1.013x 10° —200 7.08%10°° 1.047x 10°

case discussed in Sec. VA. However, there is a different lculati in thet/a?= Im? hich
point in the efficiency of the resonance. In the present apse, calculations in thet/g”=—(Mp, /m)“/8m case, which cor-

evolves in the range of respond toA,=0, in Table V. In the case df|=50, reso-
nance does not occur because the initial value @ too
1 |€| 1 |€| small. However, as¢| becomes large(x?); increases and

5.9 for ¢=-200 and g=7.089x107° (x?);=1.0x1CP.

From these results we can conclude that resonance is more
Comparing this with Eq.(3.19 in the case ofg=0, effective than the previous case.
>0, qin Eq. (5.9 is smaller than that in the case of  When ¢/g°<—(Mp /m)%/8m, the g-A, line passes
g=0 by a factor 2—3 for the fixed value ¢f[. Remember- through the zeroth instability band near its boundary. Since
ing that forg=0,6>0 the value of§ must be{=100 to  the Floquet index is small there, it takes a long time to reach
achieve(x*)i~10°, we can estimate thg¢| is needed at the final value of y2) even for the largéé|. (x2); is deter-
least |£[=200 for the efficient resonance in the casemined by the balance between the creation rate of the
of ¢/g®~—(Mp_/m)?/127. This means that the parameters particle and the expansion rate of the UnivelEe. (4.8)].
which cause the effective resonance are a little more restrigyg ¢/g2 approaches- =, the properties of the resonance are

tive than tzheg resonange discussed in Sec. III_. In thealmost the same as in the case@£0,£<0, and thené
case of¢/g”~—(Mp /m)7/16m, q evolves on the lineA, coupling assistg resonance. Since the existencegofou-
%_z_qukz/aZ and the broadness of the resonance bands i§jing makes the growth rate small for a fixed value éof
similar to the ordmar}g resonance. For this reason, we ”,GEdresonance is most efficient in the casegefO.

the value of|¢&| that is more than 10000 for the effective
resonance, but such a laryé causes strong» suppression
and the final value ofx?) is reduced. We show the numeri-
cal results on theA,=2q/3 line in Table IV, which have We shall summarize the properties of the resonance and
confirmed the above analysis. || is less than 100, the the suppression effect. On theg diagram (Fig. 11), we
resonance hardly occurs. For example, wifen—100 and  show which suppression factor is significant in various cou-
g=6.140x 10" %, the final value 0f<;2> is <;2>f:5.0>< 10. pling regimes. We can easily find that the back reaction ef-
On the other hand, in the case & —200 andg=7.089 fect is dominant in the case af=3x10* and g=5

X 1075, the final value i x2);=1.0x 10°. g resonance is in 10 °|¢| (the lined region in Fig. 11 However, in the case
fact assisted by coupling in this case. However, it is diffi- 0f 9=3>10"* and [£[>1, the &7 suppression effect be-

. — L i tant. In facgiy suppression appears either
cult to produce they particles more thaiy?);~ 1P in this comes more 'mp‘;r B 2 O
parameter range. for £=100 oré/g°<—0.1(Mp /m)“ (the shaded region in

Fig. 11. In the parameter range (Mp, /m)?/12m< &/g?
<—(Mp,/m)?/16m (new-broad resonance with<0 case,
however, although|&| is of order 100, the effective
This parameter range corresponds to the regions betwegnparticle production will not be expected. In the region
Ak=2q/3+?2/a2 andA,= —2q/3+?2/a2 [Fig. 8(b)]. Since where the back reaction or suppression effect becomes sig-
the contribution from the negativiecoupling surpasses tlge ~ Nificant, we may expect a large amount of particle produc-
coupling, the resonance band becomes quite broaglges  tion, although it will be reduced for extremely largé.
decreases. For (Mp, /m)?/8m<&/g?<—(Mp/m)2/12a, In Fig. 12, we show( x?); in terms of ¢ and g in the
the gradient of they-A, line is positive and the resonance three-dimensional plane. From this figure, we find three pla-
terminates when the variables and A, cross the lower teaus; one corresponds to the back reaction region with large
boundary of the first instability band as in the former casesg, and the other two correspond &y, suppression regions
After the resonance terminatds2) decreases gradually by Shown in Fig. 11.(x%) takes the maximal value of
adiabatic expansion. We show the result of the numerica{x?)mac=3.2X 10° at g=1x 10 °,é~—4. In other regions,

(1+6&7)2 67°t2 a (1+6&n)2 472

E. Summary

D. —w<&/g?<—(Mp_/m)?/127 (wide resonance
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103 | sists g resonance. In particular, fay<1x10°, the reso-
/*\/ nance structure is almost the same as in the cage=df,¢
Sggressm \\ ] /(back réaction) [A] #0, which means that it is essentially tiaesonance.
= =\
M — /—/ / - VI. CONCLUSIONS AND DISCUSSIONS
g Ax=2d —|\ ' ) , .
4 Ax=2q @ In this paper we have examined the properties of reso-
10 " = nance with a nonminimally coupled scalar figldn the pre-
Ar-2qB , heatipg phase. We have fognd that th.e effect_ive resonance is
a1 A possible only by a nonminimal couplingRy? in a certain
ggg;mm) [ range of paramete§. In the case oh=0,6>0, the relation
Ak=2q/:;' of A, andq in the Mathieu chart i\,= 2q/3+k?/a? and the
105 | Ax="29/ ' resonance band becomes broader in comparison witly the
200 -100 4 100 200 resonanceA, = 2q-+k2/a?). This is due to the existence of a
& £k%¢? term and the structure of resonance is different from

FIG. 11. The structure of resonance, the back reaction, anghat of theg resonance. Without thex?¢? term, & must be
&7 suppression effects in terms af and g. The regions[A],  larger than 16 for the effective resonance. However, as we
[B], [C], [D] denote new-broad resonanc&>0), ordinary-broad have shown here, the effective resonance is possiblg for
resonance[ — (Mp, /m)2/16m<£/g?<0], new-broad resonance ~0(100). For example, in the case @ 0,6=100, we find
[ (Mp/m)?/12m < £/g°< — (Mp /m)?/167], wide resonance [12) ~10' GeV, which is comparable to the case @f
[—=<¢glg’<—(Mp_/m)?127], respectively. With this diagram, 3 104 £=0. The unique feature of thé resonance is
we easily understand the resonance structure. The lined regioqﬁe existence of thés suppression effect. Asincreases up
(g=3x10 * andg=5x 10 °|¢|) denote those where the back re- ., 51, 100( x?); also increases because héeld stays in
action effect is significant. The shaded regidgss3x 10”4 and the broad resonafnce bands longer. However, vi eeds
either £=100 or £/g°< —0.1(Me./m)”] denote those wheré about 100, the&» suppression effect by the p,roduction)pf
suppression effect becomes important. particles is significant andy?); does not2 increase for the

= ~
we find that the numerical result agrees well with our analy-,?rfl es zsfgl:pt?g.ssﬁgr:h:f? egte.\‘{g%ffggéf(lgftgzcég‘;‘:eggby

Sis. _ : . N
: : . : =0£>0, we find that the maximal value ofx<); is
In this section, we have studied the combined resonancwmaﬁ 101 GeV at£=100-200.

_4 . .
.Of g andg. Forg23>< 1077, whzen the back reaction effect is As for the case 0f=0,£<0, the relation betweeA, and
important, the final values dfy“) do not become larger than = )
g becomesA,= —2q/3+k/a- and the resonance band is

those of theg resonance significantly, even §f coupling is :
further broader than the case gF0,6>0. The important

taken into account. This is due to both the suppression ! > |
and the back reaction. In the case thitis large as in¢| difference from other cases is that tAg-q curve will pass
gh the zeroth instability band below the curve/Aqf

=100, theé»n suppression effect becomes more importanlthm“2 : )
than the back reaction. Fg=3x10"%, g resonance is — U /2. As a result, even iff decreases under unity by the

sometimes assisted kycoupling. For example, for 169¢ ~ €xpansion of the Universe, the modes closé always
<200 and— =< ¢lg2< — (Mp, /m)2/167, & coupling as- stay in the resonance band. In this case, we find the termina-

tion in the growth of( x?) at which the growing rate: of
(Y?) balances the expansion rate of the Universe. In the
—1=¢&=<0 case, the increase ¢f?) is not expected because
the Hubble expansion rate surpasses the growing rate. In the
—3=¢=<—1 case, althoughy?) increases with the passage
of time, it takes more time to reach its maximum because

is very small and resonance terminates before &hesup-
pression effect becomes significant. FéE—3, (x?);
takes rather large values ang?); takes the maximal value
VO max=2X 107 GeV whené~ —4. As ¢ decreases from
&< —4, although the growth ratg increases, the final fluc-
tuation of they particle decreases. This is because ghe
suppression effect due tp-particle production plays a cru-
cial role in terminating the resonance. As a resy); de-
creases apt| %2 for |¢[>1. We should also note that the
- value of \(x%)max in the case ofy=0,£<0 is greater than
FIG. 12. (x?); in terms of¢ andg. We find three plateaus, one that in the case of=0,£>0. This is because the resonance

of which (x?); takes the maximal valuéy?) nac~3.2x1C° for g bands foré<0 are broader than those fér-0.
<1X1075¢~—4, We have also studied the combined resonance of interac-
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tions g?¢2x? and éRy2. The structure of resonance is quite tween ¢ and y is negative, although it was pointed out in
different depending on the two parameterggand £&. What ~ [29] that the production of particles increases significantly
we had been interested in is whethgrcoupling assistyy ~ compared with the positive coupling case. This is similar to
resonance in any case. However, we find that this is not ththe geometric reheating with negatigen the sense thad,
case. Fog=3x 104, and back reaction effect on the infla- can take a negative value in the Mathieu chart. It may be
ton field and metric is importang resonance is not assisted interesting to study the combined resonance of negagfve
by ¢ coupling because of theér suppression effect as well as andé. . i )

the back reaction effect at the final stage of preheating. In the !N this paper, we have also not studied the metric pertur-

parameter range whepeparticles are significantly produced Pation in the preheating phase. However, several authors
only by g resonance, the maximal value §2); does not pointed out that metric perturbation is influenced by the para-

increase even if we include the coupling. On the other metric resonancg¢30-33. It was recognized the Bardeen
hand, in the case aj=3x10 %, ¢ coupling may assisg parameter is a well conserved quantity in the reheating phase
resonance in the parameter ranges of1@&200 and—«  €xcept the short period whefi is close to zer¢30,33. On
<¢&lg?< —(Mp /m)2/16a. In particular, forg=1x10"5,  the other hand, Basseét al. [32] recently found that the
the structure of resonance is almost the same as the case wigtPid growth of metric perturbation by negative coupling in-
g=0,£#0, and it is essentially thé resonance. We find that Stability is expected and this stimulates the growth of the

the maximal value ofy{x?); is about 2< 107 GeV for g scalar field. It is worth investigating whether the growth of
<1x10°5¢~—4, which is larger than the minimally metric perturbation enhances the fluctuation of jhéield

coupled case witly~1x 103, nonminimally coupled to the spacetime curvatiRavith &
There are several things we did not investigate in this<0- ) . .
paper. One of them is the rescattering effect.)Aparticles We have studied a parametric resonanceébgoupling

are produced significantly, the fluctuations of the inflaton(éRx?) as well asg interaction g?¢?x?). Although we ex-
field are also generated and would affect the productiog of pect that any scalar field will couple to the spacetlme curva-
particles. Although it is expected that the structure of resofureé R through quantum effects, the value gfconsidered
nance does not change so much at the first stage of prehe&€"® may be too large. However, in other theories of gravity
ing, the rescattering effect will modify the final production of SUch as the Brans-Dicke theof4], the induced gravity
Y particles because it becomes important at the final stage 682): and the higher-curvature theorig36], we may have
preheating whery particles are significantly produced. As dlfferenF types of coupling to t.he spacetime curvature, which
particles are created, spatial inhomogeneity of ihdield might give a natural me(.:hams'm fpr an effective resonance.
would prevent the resonant productionyoparticles, result- 1 N€Se issues are under investigation.
ing in »=£&x?(x?) being reduced. Then we may find either
insufficient production ofy particles or the same amount of
x particles with a delay of time to reach the limiting value  We would like to thank Jun-ichirou Koga and Hiroki Ya-
due to thet  suppression. As fog-particle creation through jima for useful discussions. T.T. is thankful for financial sup-
the present coupling, we did not investigate the details aport from the JSPS. This work was supported partially by a
present. For a complete study of preheating, however, w&rant-in-Aid for Scientific Research Fund of the Ministry of
should consider the growth @b particles due to the rescat- Education, Science and Cultuitdo. 09410217 and Specially
tering effect quantitatively beyond the mean-field approxi-Promoted Research No. 08102016y a JSPS Grant-in-Aid
mation. (No. 094162, and by the Waseda University Grant for Spe-
We did not consider the case when the couplifgbe-  cial Research Projects.
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