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We investigate the resonant particle production of a scalar fieldx coupled nonminimally to a spacetime
curvatureR (jRx2) as well as to an inflaton fieldf (g2f2x2). In the case ofg&331024, thej effect assists
g resonance in certain parameter regimes. However, forg*331024, g resonance is not enhanced by thej
effect because of thej suppression effect as well as a back reaction effect. Ifj'24, the maximal fluctuation
of producedx particles isA^x2& max'231017 GeV for g&131025, which is larger than the minimally
coupled case withg'131023. @S0556-2821~99!00618-9#

PACS number~s!: 98.80.Cq, 05.70.Fh, 11.15.Kc
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I. INTRODUCTION

In an inflationary scenario, most of the elementary p
ticles in the Universe were created during the stage of reh
ing after inflation@1#. During the inflationary stage, an infla
ton field slowly rolls down to a minimum of its potential. A
reheating process turns on when the inflaton field begin
oscillate around the minimum of its potential. The origin
version of the reheating scenario was first considered in
context of a new inflationary model in@2,3#. The particles
are created through an interaction term between the infla
and some fields. A phenomenological decay term to desc
the fact that the inflaton field decays to other lighter partic
~radiation! is included in the equation of the inflaton fieldf,
and the energy of the inflaton is transferred to their therm
energy. According to this scenario, the reheating tempera
is determined by the decay rateG but not the initial value of
f. The value ofG is constrained to be small by the pertu
bation theory such asG,10220MPL , where MPL is the
Planck mass, so the reheating temperature is estimate
Tr,109 GeV. This temperature is not sufficient in order
produce baryon asymmetry based on grand unified theo
~GUT’s!.

Recently, however, it has been recognized that the reh
ing process begins by a parametric amplification of sca
particles @4–7#. This initial evolutionary phase, which i
called thepreheatingstage, provides an explosive partic
production and must be discussed separately from the pe
bative decay of inflaton. There are many works about
preheating stage based on analytical investigations@8–11# as
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well as on numerical studies@12–14#. The important feature
with the existence of the preheating stage is that the maxi
value of produced fluctuation can be so large that it wo
result in a nonthermal phase transition@15# and make baryo-
genesis at the GUT scale possible@16#, although the baryo-
genesis might be important in much lower energy scale,
the electroweak scale@17#.

So far, we know of two possible preheating scenarios: o
is that the inflaton fieldf itself is transformed into manyf
particles from a coherent inflationary phase through a s
interaction such aslf4, and the other is that another field
e.g., a scalar fieldx is created through some coupling wit
the inflaton such asg2f2x2. Both cases were first discusse
in @5# using the Hartree mean-field approximation. For t
former case, the preheating was studied@6,22# by making use
of closed time path formalism@18–21#, since the preheating
is an essentially nonequilibrium state. They analyzed
nonperturbative evolution of the inflaton fluctuations for t
self-interacting massive inflaton by the method of t
O(N)-vector model in the large-N limit as well as by the
Hartree factorization model, both of which are mean-fie
approximations. TheO(N)-vector model has the advantag
of dealing with the continuous symmetry while the Hartr
factorization model is suitable to treat the discrete symme
To confirm the mean-field approximation, the fully nonline
numerical simulation including the scattering effect of cr
ated particles was also performed in@12# for the simplelf4

model, finding that the variancêdf2&;1027MPL
2 can be

produced by the nonperturbative process of inflaton dec
They treated the scalar field fluctuations as classical o
which would be justified because the fluctuations with rat
low momenta are mainly produced by the parametric re
nance. They found almost the same result as that by
mean-field approximation.

As for the case only with a massive-inflaton potent
©1999 The American Physical Society15-1
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( 1
2 m2f2), the production of the inflaton fluctuation will no

be expected by a parametric resonance. Hence, one us
introduces another scalar fieldx coupled to the inflaton field
f through an interaction such asg2f2x2. For the production
of f particles in the self-interacting case, the coupling
constrained to bel;10212 from the observation of the Cos
mic Background Explorer~COBE!, while the coupling con-
stantg in the present case is a free parameter. Hence we
find a higher production ofx particles depending on th
value of g. As for analytical investigation ofx-field evolu-
tion, Kofman, Linde, and Starobinsky@5,8# developed the
consistent theory of preheating based on a Mathieu equa
for thex field. There are several numerical works devoted
the evolution of thex field by fully nonlinear simulations
@13,14#. A parametric resonance turns on from the bro
resonance regime in certain values of the couplingg. The
structure of resonance will be modified a lot in the expand
Universe compared with that in Minkowski space. The a
plitude of the coherentf field decreases adiabatically b
cause of the expansion of the Universe, and eventually
resonance terminates. In the case that the couplingg is small
and the resonance band is narrow from the first stage
preheating, an efficient resonance will not be expected.
the large coupling constant, the resonance band is broa
the beginning, and then we find a considerable productio
x particles. In this case, thex field crosses many instability
and stability bands even within one oscillation of the inflat
field, and stochastic resonance occurs. A significant amp
cation occurs in the broad resonance regime, but in cer
values of the coupling constantg, production via such a reso
nance will be suppressed by a back reaction of created
ticles. When such a back reaction is taken into accoun
coherent oscillation of the inflaton field is broken due to t
increase of the effective mass of the inflaton, and the ene
of the x field cannot exceed that of thef field at the final
stage of preheating. Moreover, the rescattering effect, wh
will also restrictx particle production, becomes important
the final stage of preheating.

Recently, another interesting mechanism for prehea
called a geometric reheating model has been propose
Bassett and Liberati@23#. They investigated the case whe
thex field is nonminimally coupled to spacetime curvatureR
for the massive inflaton model and found that an explos
amplification ofx will be possible if the coupling constantj
is negative@24#. This is just because of unstable modes w
a negative coupling@25#. In this sense, it is different from th
ordinary parametric resonance. In particular, they stud
how the homogeneousx field is amplified and found that a
GUT scale gauge boson with massmG;1016 GeV can be
produced in the preheating stage whenj is largely negative.

A natural question may arise: If we combine the effects
both theg resonance and thej resonance, do we find a mor
effective production ofx particles even in the case wheng is
small? It is of interest how theg-resonance picture is mod
fied by taking into account the effect of geometric reheati
If the assisting mechanism works and the final abundanc
x becomes rather large, it may change the ordinary preh
ing picture and affect the nonthermal phase transition
06351
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baryogenesis. We will discuss such a combined resonanc
detail. We also study the evolution ofx-field fluctuation
summed by all possible momentum modes in detail incl
ing the back reaction effect, because the previous stud
mainly devoted to the growth of the zero momentum mode
the initial stage of preheating@23#.

This paper is organized as follows. In the next section,
introduce basic equations in the nonminimal preheating
includes the ordinaryg resonance. The results of theg
50,j.0 case is presented in Sec. III. We study the anal
cal estimation as well as numerical results, and comp
them with each other. In Sec. IV, we analyze theg50,j
,0 case. The structure of the negative coupling instability
investigated. In Sec. V, the combined effect ofg andj reso-
nance is studied. We present that at which values ofg andj
parametric resonance become most efficient. Finally, we g
our discussion and conclusions in the final section.

II. BASIC EQUATIONS

We consider a model where an inflaton fieldf is inter-
acting with a scalar fieldx, which is nonminimally coupled
with the spacetime curvatureR,

L5A2gF 1

2k2
R2

1

2
~¹f!22V~f!2

1

2
~¹x!22

1

2
mx

2x2

2
1

2
g2f2x22

1

2
jRx2G , ~2.1!

wherek2/8p[G5MPL
22 is Newton’s gravitational constant

g and j are coupling constants, andmx is a mass of thex
field. V(f) is a potential of the inflaton field. In this pape
we adopt the quadratic potential

V~f!5
1

2
m2f2, ~2.2!

wherem is a mass of the inflaton field, and we use the va
of m51026MPL that is obtained by fitting density perturba
tions to the COBE data.

Since nonminimal coupling between the spacetime cur
tureR and thex field makes the basic equations complicate
it is convenient to transform action~2.1! into the Einstein
frame by a conformal transformation@26#. We make the con-
formal transformation as follows:

ĝmn5V2gmn , ~2.3!

whereV2[12jk2x2. The Lagrangian density in the Ein
stein frame becomes

L5A2ĝF 1

2k2
R̂2

1

2V2
~¹̂f!22

1

2V4
m2f22

1

2
F2~¹̂x!2

2
1

2V4
~mx

21g2f2!x2G , ~2.4!
5-2
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where variables with a caret denote those in the Eins
frame, and

F25
12~126j!jk2x2

~12jk2x2!2
. ~2.5!

To make the kinetic term of thex field canonical, we define
a new scalar fieldX as

X[E F~x!dx, ~2.6!

by which the Lagrangian density is now

L5A2ĝF 1

2k2
R̂2

1

2V2
~¹̂f!22

1

2V4
m2f22

1

2
~¹̂X!2

2
1

2V4
~mx

21g2f2!x2~X!G . ~2.7!

Since we are interested in a preheating after inflation
usual, we shall assume that the spacetime and the inflatof
give a classical background and the scalar fieldx is treated
as a quantum field on that background. In the present mo
however, there is some problem. We have performed a c
formal transformation, where conformal factorV2 includes
quantum variablex2. Then, in order not to discuss quantu
gravity, the conformal factor should be replaced with so
expectation value. Here, we regard the conformal factorV2

as 12h @27#, where

h[jk2^x2&. ~2.8!

^x2& corresponds to the number density of the createdx
particle, wherê •••& denotes an expectation value of som
functional ofx ~or X).

With such a transformation, we assume that the space
and the inflaton fieldf are spatially homogeneous, and ado
the flat Friedmann-Robertson-Walker metric as the ba
ground spacetime;

dŝ252dt21â2~ t !dx2. ~2.9!

Hereafter, as we argue only in the Einstein frame, we dro
caret. The evolution of the scale factora yields

S ȧ

a
D 2

5
k2

3 F 1

2~12h!
ḟ21

1

2~12h!2
m2f21

1

2
^~¹X!2&

1
1

2~12h!2
~mx

21g2f2!^x2&G , ~2.10!

where a dot denotes a derivative with respect to time co
dinatet.

The evolution of the inflaton fieldf is described by
06351
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f̈1S 3
ȧ

a
1

ḣ

12h
D ḟ1

1

12h
~m21g2^x2&!f50.

~2.11!

Note that the fluctuation of the inflaton fielddf is not con-
sidered since we assume that the inflaton field is spati
homogeneous. However, the growth of thef fluctuation
would be expected to appear as thex field is amplified. Our
investigations are limited in the sense that rescattering
tween thex anddf fluctuations is not included.

In Eq. ~2.11!, if we introduce a new scalar fieldw such as

w[b3/2f, ~2.12!

whereb35a3/(12h), then the fieldw obeys the following
equation:

ẅ1F 1

12h
~m21g2^x2&!2

3

4 S 2b̈

b
1

ḃ2

b2D Gw50.

~2.13!

Note that in the case of minimal couplingj50, h vanishes,
hence the coherent oscillation ofw is broken only by a
g2^x2& term. As^x2& grows, the effective mass of the infla
ton meff

2 5m21g2^x2& gets large, i.e., oscillation become
rapid. This effect, which is called the back reaction effect
the inflaton field, suppresses the resonant particle crea
On the contrary, when thej effect is taken into account, 1
2h is decreasing aŝx2& grows, hence one may expect th
this effect also changes the coherent oscillation ofw. How-
ever, as we will see later, this is not the case and we
neglect thej effect on the inflaton field in most cases.

Next, let us consider the equation of theX field. The
Heisenberg equation of motion is derived from Eq.~2.7!:

Ẍ13
ȧ

a
Ẋ2] i]

iX2
]

]X F ḟ2

2V2
2

1

2V4
m2f2

2
1

2V4
~mx

21g2f2!x2G50, ~2.14!

where an index with a roman character denotes space c
dinates. In order to study a quantum particle creation ox
fields, we make the following mean-field approximation wi
respect toX, which provides us a linearized equation for
quantum fieldX:

Ẍ13
ȧ

a
Ẋ2] i]

iX2¹X
2F ḟ2

2V2
2

1

2V4
m2f2

2
1

2V4
~mx

21g2f2!^x2&GX50, ~2.15!

where ¹X52A^X2&]/]^X2&. From the relation~2.6!, we
have also assumed

d~A^X2&!5A^F2&d~A^x2&!, ~2.16!
5-3
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where ^F2&5@12(126j)h#/(12h)2. Expanding the sca
lar fieldsX as

X5
1

~2p!3/2E „akXk~ t !e2 ik•x1ak
†Xk* ~ t !eik•x

…d3k,

~2.17!

whereak andak
† are the annihilation and creation operato

we find thatXk obeys the following equation of motion:

Ẍk13
ȧ

a
Ẋk1F k2

a2
1G~^x2&!GXk50, ~2.18!

with

G~^x2&![
1

~12h!@12~126j!h# F ~113h!~mx
21g2f2!

12jk2m2f22~123h!jk2ḟ2

1
h

12h

41~125h!~126j!

12~126j!h
$~11h!

3~mx
21g2f2!12jk2m2f22~12h!jk2ḟ2%G .

~2.19!

The expectation values ofX2 andx2 are expressed as

^X2&5
1

2p2E k2uXku2dk, ^x2&5
1

2p2E k2uxku2dk.

~2.20!

Introducing the functionYk5a3/2Xk , instead ofXk , we find

Ÿk1vk
2Yk50, ~2.21!

where

vk
25

k2

a2
1G~^x2&!2

3

4 S 2ä

a
1

ȧ2

a2D , ~2.22!

which is a time-dependent frequency ofYk .
At the first stage of preheating when thex particles are

produced by quantum fluctuation, we find the occupat
number in theYk state by the Bogoliubov transformation a

nk5
vk

2 S uYku21
uẎku2

vk
2 D 2

1

2
. ~2.23!

However, after manyx particles are created and each mo
is amplified, thexk field could be regarded as the classic
field in a good approximation@13,14#. We may not have to
use Eq. ~2.23! at the classical stage. Khlebnikov an
Tkachev developed the semiclassical description of fluc
tion produced by the inflaton decay@12#. In fact, they studied
the inflaton decay by the classical equation of motion a
06351
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performed a fully nonlinear calculation. To give the initi
conditions, we follow their approach, i.e., the initial distrib
tion for Yk is described as

P@Yk ;t50#5A2vk~0!

p
exp@22vk~0!uYku2#,

~2.24!

and Ẏk is correlated toYk as

Ẏk52 ivk~0!Yk . ~2.25!

We investigate thêx2& evolution with those initial condi-
tions as the semiclassical problem.

From Eq.~2.19!, we easily find that properties of the pre
heating in the nonminimal coupling theory are quite differe
from ordinaryg resonance. First, thejk2m2f2 and jk2ḟ2

terms cause the resonance, as well as the interaction
g2f2 with the inflaton field. These different types of res
nant terms either strengthen or weaken the resonance in
other, depending on the coupling constants. Secondly, as
x particles are produced significantly, the suppression ef
by the second term in Eq.~2.19! becomes crucial. This
means that in the case of nonminimal coupling, we have
consider not only ordinary back reaction effects to the infl
ton field and metric but also the suppression effect by t
term. In what follows, we will investigate these issues
detail.

III. THE RESONANCE BY POSITIVE COUPLING j

In this section, we investigate theg50, j.0 case. First,
however, we briefly review the ordinaryg resonance, i.e., the
case withgÞ0, j50 for comparison@5,8#. In this and the
next two sections, we mainly study the masslessx field. For
the massive case, we will give some discussion at the en
each section.

If the back reaction of thex field to the inflaton field and
metric are neglected, the inflaton field oscillates almost
herently with damping factor 3H and is approximately de
scribed as

f5F~ t !sinmt. ~3.1!

The amplitudeF(t) decreases with time as

F~ t !5
MPL

A3pmt
. ~3.2!

Then the time-dependent frequency of the each compo
Yk becomes

vk
25

k2

a2
1g2f25

k2

a2
1g2F2 sin2 mt. ~3.3!

We can reduce Eq.~2.21! to the well-known Mathieu equa
tion
5-4
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d2Yk

dz2
1@Ak22q cos 2z#Yk50, ~3.4!

wherez5mt and

Ak52q1
k̄2

a2
, ~3.5!

q5
g2F2

4m2
. ~3.6!

k̄ is normalized bym as k̄5k/m. Stability or instability with
Eq. ~3.4! depends on the variables ofAk and q, which is
shown by a stability-instability chart~see Fig. 1! @28#. In the
unstable region~the lined region in Fig. 1!, Yk grows expo-
nentially asYk}exp(mkz) with the Floquet indexmk and
particles with momentumk are produced. For smallq, the
width of the instability band is small and fewk modes grow
by this resonance. This is called the narrow resonance.
the other hand, for the largeq, the resonance can occur for

FIG. 1. The schematic diagram of the Mathieu chart and
typical paths for three types of resonance. The lined regions de
the instability bands~zeroth, first, second, . . . ). The line of Ak

52q is the typical line of the ordinaryg resonance, while the line
of Ak52q/3 andAk522q/3 show the lowest limits of the reso
nances by positive and negativej couplings, respectively. We find
that the width of the instability bands becomes wider for largeq.
The Floquet index in the lower instability band gets larger for fix
q.
06351
n

broad range of the momentumk space. Since the growth rat
m of the x particle becomes larger with the increase of t
variableq, this resonance gives more efficient particle pr
duction than the narrow one. This is called the broad re
nance. Note that the initial amplitudeF of the inflaton field
and coupling constantg play important roles in deciding
whether resonance is narrow or broad. In theg-resonance
case, the allowed region on the Mathieu chart is determi
by Eq. ~3.5! as

Ak>2q. ~3.7!

Hence the broadest resonance is given by the limit lineAk
52q.

When q is sufficiently large initially, the resonance o
each mode occursstochastically@5,8#. In this case, the fre-
quencyvk decreases by cosmic expansion andvk dramati-
cally changes within each oscillation of the inflaton field,
the phases of thex field at successive moments off50 are
not correlated with each other. At the first stage of the re
nance, the fields cross a large number of instability ban
The periods when they are in the instability band are so s
that the resonance cannot occur efficiently compared w
that in the Minkowski spacetime. However, nevertheless,
number of x particles can still grow exponentially. Asq
becomes smaller, cosmic expansion slows down, and
fields stay in each resonance band for a longer time. Wheq
drops down to about 1, the first instability band

12q2
1

8
q2<Ak<11q2

1

8
q2, ~3.8!

becomes important. When the variables decrease below
lower boundary of Eq.~3.8! by the expansion of the Uni
verse, the resonance terminates. We have to note here
there is another mechanism which terminates the resona
When the initial value ofq is large (g*3.031024), x par-
ticles are produced efficiently and the back reaction onto
inflaton field cannot be ignored. This makes the oscillation
the inflaton field incoherent and finally stops the resonan
That is called the back reaction effect of thex field.

Now we turn to the case ofg50,j.0. In this case the
resonance occurs by the coupling between thex field and the
spacetime curvatureR @23#. The G(^x2&) term defined by
Eq. ~2.19! becomes

G~^x2&!5
1

~12h!@12~126j!h#

3F2jk2m2f22~123h!jk2ḟ2

1
h

12h

41~126j!~125h!

12~126j!h

3$2jk2m2f22~12h!jk2ḟ2%G . ~3.9!

We easily find that ifh increases up to the order of unity
G(^x2&) diverges and the frequency of Eq.~2.22! increases

e
te
5-5
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to infinity. The resonance seems to continue effectively
the final stage of preheating. However, this is not the ca
Our numerical calculation shows that the resonance te
nates whenh is much smaller than unity in any case. Wi
the condition ofh!1, G(^x2&) is rewritten as

G~^x2&!'
jk2m2

~116jh!2 S 2f22
ḟ2

m2D . ~3.10!

Note that there exists the suppression factor (116jh)22,
which makes the amplitude of thex field small effectively.
Even in the case ofh!1, we can expect that this suppre
sion plays an important role whenj takes large values. We
will see later that this effect becomes significant in the c
of j*70. Whenh is small compared with unity, the bac
reaction to the inflaton field and the metric is negligible a
we find from Eq.~2.13! that thew field oscillates almost
coherently.

By using these relations, we can rewrite the equation
Yk in the form of the Mathieu equation

d2Yk

dz2
1@Ak22q cos~2z2a!#Yk50, ~3.11!

where

Ak5
k̄2

a2
1

2p

~116jh!2
, ~3.12!

q5
A~2p!212~jk2F2!2

2~116jh!2
, ~3.13!

p5
jk2

4
~F22F82!, ~3.14!

a5tan21S jk2FF8

2p1jk2F2D . ~3.15!

A prime denotes a derivative with respect toz. Equation
~3.11! is not exactly the Mathieu equation, because it co
tains the time-dependent phase terma. This term is due to
the existence ofḟ2 term in Eq.~3.10!. If we define a new
dimensionless time parametert̄ 5mt/2p, a is rewritten as

a5tan21S 24p t̄

12p2 t̄ 221
D , ~3.16!

where we used the relation~3.2!. Sincet̄ represents the num
ber of the oscillation of the inflaton field naively,a ap-
proaches zero rapidly within the first oscillation of the infl
ton field. As a result, the time dependence ofa does not
affect the resonance process.

Although the equation ofYk has the same form as th
ordinaryg resonance except for the time-dependent phasa,
properties of resonance are not the same. After the first
06351
t
e.
i-

e

f

-

s-

cillation of the inflaton field, setting an initial time ast̄
51/4 as Kofmanet al. @8#, we have the condition

F@
Ḟ

m
. ~3.17!

Then the evolution ofAk andq is approximated as

Ak'
2

3
q1

k̄2

a2
, ~3.18!

q'
3

4~116jh!2
jk2F2'

1

~116jh!2

j

2p2 t̄ 2
. ~3.19!

The line described by Eq.~3.18! lies below the one which is
obtained in the ordinaryg resonance. As is studied in@23#,
the Ricci scalar can be replaced withḟ2 term and the non-
minimal coupling provides another contribution. This is b
cause the above relation~3.18! becomes different from the
relation~3.5! of ordinaryg resonance. In fact, we can easi
estimate that without theḟ2 term,j must be larger than 104

for the effective resonance, because we have only a sim
coupling term to theg resonance in that case. Since the wid
of the instability bands are thick for largeq ~see Fig. 1!, j
resonance gives broader resonance and we may expec
efficient x-particle production. However, as is found fro
Eq. ~3.19!, there are two factors which decrease the varia
q. One is the decrease ofF by the expansion of the Univers
and the other is the suppression effect caused by the fa
(116jh)22, which appears only in thej resonance. Which
factor is more important depends on the parameterj and the
efficiency of the resonance, i.e.,h. Whenjh&0.1, this sup-
pression effect can be neglected. Note that the back reac
effect is negligible becauseh is always small in any param
eter. Hence, it may be worth stressing that thej resonance in
the g50 case will terminate only by passing through t
resonance band, because the coherence of the inflaton i
broken.

By the final value ofq (5qf) when the resonance end
we can estimate the timet f when the resonance stops and t
total amount of createdx particles^x̄2& f[^x2& f /m2. In the
case ofq*1, particle creation occurs when the frequencyvk
changes nonadiabatically, where the condition is written

vk
2,

dvk

dt
. ~3.20!

Neglecting theḞ in the calculation in thejk2ḟ2 term in Eq.
~3.10!, vk

2 yields

vk
2'

k2

a2
1

jk2m2

~116jh!2
~3f22F2!, ~3.21!

and then the nonadiabatic condition~3.20! becomes
5-6
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k2

a2
,F 3jk2m2

~116jh!2
fḟ2

6j2ḣk2m2

~116jh!3
~3f22F2!G 2/3

2
jk2m2

~116jh!2
~3f22F2!. ~3.22!

Let us investigate the value off when the right-hand side
~rhs! in Eq. ~3.22! takes the maximum value. Nonadiaba
amplification occurs mostly whenf is passing through
around the minimum of its potential (ufu!MPL), so we can
setḟ'mF in Eq. ~3.22!. Moreover, theḣ term is negligible
compared with the former term, which is confirmed by n
merical calculation. Then, Eq.~3.22! can be approximately
rewritten as

k2

a2
,F 3jk2m3

~116jh!2
FfG 2/3

2
jk2m2

~116jh!2
~3f22F2!.

~3.23!

Differentiating the rhs of Eq.~3.23! with respect tof, we
find that it takes the maximal value at

fmax5
1

33/4
AmF

C1/2
'

1

2
AmF

C1/2
, ~3.24!

whereC[3jk2m2/(116jh)2. Then the maximum value o
momentum yields

k̄max
2

a2
5

CF2

3m2
1~24/321!

ACF

4m
, ~3.25!

where k̄max
2 [kmax

2 /m2. As we have the relationACF/m
52Aq by Eq. ~3.19!, the maximum momentum is rewritte
in terms ofq as

k̄max
2

a2
5

4

3
q2S 21/32

1

2DAq'
4

3
q1

3

4
Aq. ~3.26!

This equation gives the maximum momentum for the re
nance. The resonance terminates when the variablesAk andq
pass the curve of

Ak'12q2
1

8
q2, ~3.27!

in the Mathieu chart@28#. Combining the relations~3.18!,
~3.26!, and~3.27!, we obtain the equation with respect toqf
as

qf
2124qf16Aqf1850, ~3.28!

resulting in qf50.2165'1/5. If we adopt the typical mo-
mentumk* , which would be defined as

k* 5
kmax

A2
, ~3.29!
06351
-

-

instead ofkmax, we find

3qf
2156qf19Aqf12450, ~3.30!

andqf50.3353'1/3.
The analytic expression of Eq.~3.28! or ~3.30! is only an

approximation because the maximal momentumkmax will be
changed whenq drops down toq&1. However, it gives a
good agreement with the numerical calculations. First,
examine the evolution of̂x2&, comparing the results of the
numerical calculations with the analytical estimation. Forj
&10, the numerical calculations show no effective produ
tion of ^x2&. This means that the initial value ofq is so small
and it decreases so fast because of the expansion of the
verse that thex field does not stay in the instability bands fo
enough time. For 10&j&70, the resonance occurs becau
the period during which thex field stays in the broad reso
nance band becomes longer. For example, in the casej
550, the value of̂ x2& first increases exponentially by th
passage of time and reaches its maximum value^x̄2& f

53.0903103 at t̄ f52.85 @Fig. 2~a!#. Although ^x̄2& f is not
large enough for the efficient preheating, the parametric re
nance evidently occurs. Since the maximal value ofjh is
jh f'1.931024, we can ignore the suppression factor
16jh)22 in Eq. ~3.19!. Hence the resonance is terminat
by the expansion of the Universe. The final value ofq ob-
tained by the numerical calculation isqf'0.312, which is
almost the same as the analytically estimated value with
typical momentumk* . In the case that the suppression e
fect is neglected, we can estimate the time when the re
nance ceases by

t̄ f5A j

2p2qf

'A 3j

2p2
. ~3.31!

For the case ofj550, t̄ f52.76, which is close to the nu
merical value t̄ f52.85. After ^x̄2& reaches its maximum
value, it decreases monotonically. This is the adiaba
damping due to the expansion of the Universe.

In order to see thej dependence of the numbers of cr
ated particles, we depict̂x̄2& f in terms of j in Fig. 3. It
shows that although the created particle first increases as
coupling constantj gets large, it rather decreases beyond
critical valuejc , which can be understood as follows.

When j is less than about 100,̂x̄2& f increases as the
coupling constantj gets larger. This is just because the in
tial value ofq is larger and then the resonance begins in
broader bands. For 70&j&200, the suppression factor be
comes important. Thej5100 case is shown in Fig. 2~b!. At
the first stage,̂ x̄2& increases rapidly with the larger growt
rate than the case withj550, but it reaches its maxima
value ^x̄2& f59.5503105 soon. Sincejh f50.240 at the
maximum point, the suppression effect by (116jh)22 can-
not be ignored. In Fig. 3, we find that^x̄2& f is almost flat
around;106 in the parameter rangej5100–200.
5-7
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FIG. 2. The evolution of̂ x̄2& as a function oft̄ in the case of
g50,j.0 @~a! j550, ~b! j5100, and~c! j51000#. We find that

the parametric resonance occurs by the positivej coupling. ^x̄2&
increases exponentially and reaches its final value^x̄2& f . Then, it

decreases by the adiabatic expansion.^x̄2& f takes the maximal
value forj;100. For largerj (j*100), although the growth rate

becomes large, the final value^x̄2& f is suppressed by thejh term.
06351
For j*200, the suppression effect by largej is more
effective than the increasing of^x̄2&. At the first stage of
preheating, the growth rate of^x̄2& becomes larger with the
increase ofj @Fig. 2~c!#. However, the resonance soon te
minates with the smaller final value^x̄2& f than in the case of
j'100 by the suppression effect. For example, in the c
with j51000, ^x̄2& f58.3183104, and jh f52.090 at t̄ f
51.31, which is much smaller than the amount in the c
with j5100. In fact,^x̄2& f decreases monotonically by th
suppression effect beyondjc;100–200~Fig. 3!. In the case
of j*200, we can estimate the value of^x̄2& f as follows.
Assuming that the mode with the typical momentumk* is
the leading mode of the growth of^x̄2&, we can rewrite Eq.
~3.19! as

^x̄2& f5
~MPL /m!2

48pj2 SA 3j

2p2 t̄ f
2
21D , ~3.32!

at the maximal point. In our numerical calculation, we fin
that t̄ f is well approximated by the constant value 1.31 wh
j is greater than 500. Then,^x̄2& f decreases as

^x̄2& f}j23/2, ~3.33!

which is confirmed by our numerical result given in Fig.
for j*500.

In Table I, we also show our numerical results and t
estimated values~3.32! for the maximal valuê x̄2& f . The
present analytical estimation gives a good approximation
the numerical results. A small difference between those m
be due to the naive condition of Eq.~3.20!. If we take into
account all momenta larger thank* , we will obtain the

FIG. 3. The final value of̂ x̄2& as a function ofj in the case of

g50,j.0. For 0&j&100, ^x̄2& f increases asj increases becaus

the initial value ofq gets large. For 100&j&200, ^x̄2& f takes its

maximal value (;106), and for j*200, ^x̄2& f decreases by the
suppression factor as;j23/2.
5-8
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larger values of̂ x̄2&analytic, where the estimation gives
value closer to the numerical one.

Finally, we should mention the effect of a mass of thex
field. In general, the mass effect of thex field works as a
suppression factor, because the relation betweenAk andq in
Eq. ~3.12! is modified as

Ak5
k̄2

a2
1

2p

~116jh!2
1

mx
2

m2
. ~3.34!

However, since the resonance band is wider inj resonance
compared withg resonance, the effective production ofx
particles is still expected even if the mass term is taken
account. In fact we have found that if the mass is or
1013 GeV ~namely, the same order of the inflaton mas!,
x particles are created as same as the massless case wj
is about 100–200. The example is given in Fig. 4. T

TABLE I. The final values^x̄2& f obtained by the analytica
estimation and by the numerical calculation in the case ofg50,j
.0. The analytical estimation gives a good approximation to

numerical results.̂ x̄2&numerical takes the maximal value atj;100.

We also show the timet̄ f when the resonance ceases andjh, which
indicates a suppression effect. For largej, the suppression effec
@q;(116jh)22# becomes crucial.

j t̄ f ^x̄2&analytic ^x̄2&numerical
jhnumerical

20 1.85 8.610 8.731028

50 2.85 3.0903103 1.931024

70 2.85 3.7503105 4.631022

100 2.40 4.1383105 9.5503105 2.431021

500 1.31 1.5133105 2.1093105 1.3
1000 1.31 5.6263104 8.3183104 2.1
10000 1.31 1.9223103 2.6303103 6.6

FIG. 4. The evolution of̂ x̄2& as a function oft̄ in the case of
g50,j5200,mx5m. The significant production of massivex par-
ticles of orderm;1013 GeV is expected by the positivej reso-
nance.
06351
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final value of ^x̄2& in the case ofg50,j5200,mx5m
is about 106, which is almost the same as the massless c
However, forj,1000, it is difficult to have a resonant pro
duction of x particles with the mass larger than 100 m
(;1015 GeV), because the relation betweenAk andq devi-
ates from the resonance bands due to the mass term. Whj
is much larger than 1000, although it is not likely, we st
expect production of a massivex particle whose mass is o
order 1015 GeV at the initial stage of preheating. Howeve
as the production of thex particle proceeds,jh suppression
becomes efficient for such a large value ofj, resulting in a
small total amount of̂ x̄2&. Namely, massivex-particle pro-
duction is possible whenj is sufficiently large, but the fina
amount ofx particles gets small by thejh suppression ef-
fect. Whether or not such a small amount of production c
still provide us the baryonsynthesis is another proble
which we do not investigate here.

IV. THE RESONANCE BY NEGATIVE COUPLING j

Next, we investigate the case ofg50,j,0. Sinceh is
small compared with unity as we will see later by numeric
calculation, we can use the Mathieu equations~3.11!–~3.15!
to analyze our numerical results in this case as well. Negl
ing theḞ term, the relation betweenAk andq is now

Ak'2
2

3
q1

k̄2

a2
, ~4.1!

where

q'
1

~116jh!2

uju

2p2 t̄ 2
. ~4.2!

Note thatAk can take a negative value because of the ne
tive couplingj. This fact makes the properties of resonan
quite different from the case ofj.0 as was pointed out in
Ref. @23#. In the regions ofAk,0, a new instability band
~zeroth instability band! extends below some curve which
approximated byAk'2q2/2 whenq is small ~see Fig. 1!.
One of the important features is that this zeroth instabi
band reachesAk50 in the limit of q50. Consider the modes
with very small momentumk. The line of Ak522q/3
crosses to the curveAk'2q2/2 at q'1.4. Hence, even ifq
evolves below unity by the expansion of the Universe, th
remain some unstable modes in this instability band. Si
the Floquet indexmk of this instability band behaves asmk

;Aq whenq is small, resonance continues to occur untiq
vanishes. Moreover, most of theAk,0 region is covered by
either the zeroth or higher instability bands. Almost
modes contribute to the resonant process in almost all
time with a high growth rate. Hence, one can expect the v
effective particle production.

We show numerical results for the evolution of^x2& in
Fig. 5. Forj5220, q takes initially the value;16 and
modes are either in the first or in higher instability band
depending on the momentum. However, after the first os
lation of the inflaton field,q decreases to;1 and some

e
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FIG. 5. The evolution of̂ x̄2& as a function oft̄ in the case of

g50,j,0 @~a! j5220 , ~b! j5250, and ~c! j52100#. ^x̄2&
increases exponentially in the first stage by the parametric r

nance and reaches to its final value^x̄2& f . After then, it approaches
a constant value because of the creation rate of thex particle and
the expansion rate of the Universe balance.
06351
modes enter into the zeroth instability band.^x2& increases
exponentially mainly by those modes during the first seve
oscillations of the inflaton field. Thereafter, the growth ra
becomes small and̂x2& approaches the constant valu

^x̄2& f54.13107. At this stage, the production ofx particle
balances with the dilution by the Hubble expansion. Foj
52100, ^x2& increases more rapidly than the case ofj
5220 at the first stage and reaches to its maximum va

^x̄2& f54.43106 at t̄ 57.7. The main growth of̂x2& occurs
until t̄ 52, when q is of order 1. After t̄ 52, the x field
enters the zeroth instability band, and the increase of^x2&
stops at t̄ 57.7. After that, ^x2& takes almost a constan
value. This behavior is universal for the case withj,0. To
understand the present results more deeply, we shall esti
the value of̂ x̄2& f .

From the relations~2.16! and ~2.20!, we can obtain the
following relation:

d

dt
^x2&5A ^x2&

^F2&^X2&

1

a3 S d

dt
^Y2&23H^Y2& D ,

5A^x2&^X2&

^F2&
m~2m23H̄ !, ~4.3!

where we have used the expression^Y2&5a3^X2&;e2mmt

with m being the Floquet index andH̄5H/m. The growth of
^x2& stops when the rhs vanishes, i.e., when the dilut
effect by the expansion of the Universe surpasses the par
creation rate. Neglecting the back reaction effect on the m
ric, the evolution of the Hubble parameter is approximat
written by

H̄'A4p

3

F

MPL
'

1

3p t̄
. ~4.4!

While, the relation betweenm andA in the zeroth instability
band can be written by@28#

m'F2A1
~A21!q2

2~A21!22q2G 1/2

. ~4.5!

Considering the modes which are close to the line ofA
522q/3, the Floquet indexm is given as

m'A2q

3
'

1

116jh
Auju

3

1

p t̄
. ~4.6!

Until ^x2& reaches its maximum value,m decreases faste
than 1/t̄ by the existence of the suppression factor 1/
16jh). Because of this behavior, the Hubble expansi
which decreases as;1/t̄ , will catch up with the inflaton
decay, and then the preheating is terminated. Namely,
main factor which stops the growth of^x2& is the production
of ^x2& itself. Substituting Eqs.~4.4! and~4.6! into Eq.~4.3!,
the growth rate of̂ x2& is approximately given as

o-
5-10
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d

dt
^x2&'A^x2&^X2&

^F2&

m

p t̄
F 1

116jh
A4uju

3
21G .

~4.7!

When the term in the square brackets vanishes, the grow
^x2& ceases. By this condition we find the final value of^x2&
as

^x̄2& f5
~MPL /m!2

48pj2 FA4uju
3

21G . ~4.8!

Note that the final value of̂x2& depends on onlyj, but not
on t̄ f . Once^x2& reaches its maximum,m and H both de-
crease as 1/t̄ . Note that in the case ofg50,j.0, the depen-
dence ofm is m;q;1/t̄ 2 when q is close to zero and tha
^x2& does not approach the constant value but adiabatic
decreases by the Hubble expansion.

From Eq.~4.7!, we find that the resonance does not occ
in the case of 0,uju,0.75, and this is confirmed by numer
cal calculation. In this parameter range, the growth ratem is
small as compared with the Hubble expansion rate. By
~4.8!, we guess that̂x̄2& f may take the maximal value atj
'21.33. However, this is not the case actually. In the23
&j&21 case, since the creation rate of thex particle is
small, it takes more time to complete thex-particle produc-
tion. As time passes, a contribution of producedx particles
to the Hubble expansion rate becomes comparable to th
the inflaton field, and the estimation~4.8! cannot be applied
The growth of̂ x̄2& stops before thejh suppression effect in
Eq. ~4.7! becomes significant. Hence, for23&j&21, al-
though thex-particle production is possible, the final abu
dance of thex particle is not so large. For example, in th
j522 case, the numerical value of the final abundance

^x̄2& f53.23103, which is much smaller than the estimate
value ^x̄2& f51.03109 by Eq. ~4.8!. On the other hand, fo
j&23, the jh suppression effect plays a crucial role
teriminating the increase of̂x̄2&. Numerically, ^x̄2& f takes
the maximal valuê x̄2&max;3.23108 at t̄ f;3.33105 when
j;24. In this case, although the growth rate is still sm
compared with other cases asg.0,j50 andg50,j.0, the
final fluctuation is large. Forj&24, ^x̄2& continues to grow
until x particles are significantly produced, and finally t
jh suppression effect terminates the resonance. In th
cases, the analytic estimation based on Eq.~4.8! can be ap-
plied. By Eq. ~4.8!, we expect that̂ x̄2& f decreases as th
decrease ofj (&24). For example, numerical values of th
final fluctuation are^x̄2& f51.1223108 for j5210 and

^x̄2& f54.1303107 for j5220. In j5210 case,t̄ f is about
t̄ f;1.03103 and the growth rate ism;0.001. Forj5220,
the growth rate increases up tom;0.1, and the resonanc
ends att̄ f528.28. In the case ofuju@1, the resonant time
becomes very short by this suppression and the final valu

^x̄2& is reduced. Equation~4.8! shows that̂ x̄2& f decreases a
uju23/2 for uju@1.

In Table II, we show the analytically estimated and n
06351
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merical values of̂ x̄2& f for various cases. We find that th
analytical estimation gives a good agreement forj&24.
The small discrepancy comes from the fact that we mai
considered the modes close tok50, which gives the larges
contribution in most of the stages. Also, since the act
Hubble parameter is larger than is estimated by Eq.~4.4!,
this decreases the estimated value of^x̄2& f . Note that the
final value of^x̄2& f53.1623108 at j524 is larger than the
maximal value in the case ofg50,j.0 (^x̄2&max;106 at
j5100– 200). Since the resonance bands of the nega
coupling are broader than those of the positive coupling
the previous section, the morex particles are created and th
final value of^x̄2& becomes larger. However, when the val
of uju becomes large,̂x̄2& f decreases asuju23/2, which is the
same as the positive coupling case. We conclude that
suppression effect controls the final value of^x̄2& for large
uju in the j-resonance case.

When the mass of thex field is taken into account, the
resonance is suppressed as in the case ofg50,j.0. How-
ever, since the resonance band is broader than thoseg
50,j.0 case, we expect considerable production ofx par-
ticles for j,0. One important property in the negativej
case is that the massivex particle is hard to create once th
x field enters the zeroth instability band. This is because
x field deviates from the zeroth instability region by th
mass effect. Even in the case ofj5220–230 when mass-
lessx particles are effectively produced as^x̄2& f*53107,
massivex-particle production is strongly suppressed beca
the x field deviates from the zeroth instability band so
after the first oscillation of the inflaton field. For example,
the case ofg50,j5230,mx5m, we find^x̄2& f;103, which
is not an effective resonance. Rather, in the case ofg50,j
52100–2200, in spite of thejh suppression effect, the
producedx particles exceed more than̂x̄2& f5106 for mx

5m ~Fig. 6!. However, ifmx*10m, it becomes difficult to
produce more than̂x̄2& f;106 even for j52100–2200.
We show in Fig. 7 the final abundance of thex particle as a

TABLE II. The final value^x̄2& f obtained by the analytical es
timation and by the numerical calculation in the case ofg50, j

,0. For uju>4, both values show the same tendency that^x̄2& f

gets large for decreasinguju. However, foruju<3, the analytic es-
timation by Eq.~4.8! cannot be applied~see text for the detail!.

^x̄2&numerical takes the maximal value atj'24.

j t̄ f ^x̄2&analytic ^x̄2&numerical
ujuhnumerical

22 7.53105 1.0493109 3.1843103 3.231027

24 3.33105 5.4253108 3.1623108 1.331021

210 1.03103 1.7583108 1.1223108 2.831021

220 28.28 6.9033107 4.1303107 4.231021

250 15.26 1.8963107 1.0993107 6.931021

2100 7.66 6.9943106 4.3553106 1.1
21000 4.61 2.3553105 1.6063105 4.0
210000 4.18 7.5913103 5.0693103 12.7
5-11
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function ofmx for j521000 case. In this case, we find th
thex particle whose mass is more thanmx;100m cannot be
created. In order to produce the GUT scale particles (mx

;103m;1016 GeV), the value ofAk is more thanAk

5106 sincemx
2/m2;106 in Eq. ~3.34!. This means that the

resonance does not happen at all from the very beginn
unlessj&2106 ~noteq'uju initially !. Moreover, whenuju
is extremely large such asj;2106, the x particle with the
mass of order 1016 GeV can be created initially, but the fina
amount will be largely reduced by thejh suppression effect
As is the same with theg50,j.0 case, whether or not suc
a small amount of production can provide us the baryons
thesis is another problem. We then conclude that for
massive case, effectivex-particle production is expecte
when thex field does not deviate from the instability ban
initially and thejh suppression effect is not too strong.

FIG. 6. The evolution of̂ x̄2& as a function oft̄ in the case of

g50,j52200,mx5m. The final value of^x̄2& f'106.5 is larger
than the case ofg50,j5200,mx5m.

FIG. 7. The final value of̂ x̄2& as a function ofm̄x5mx /m in

the case ofj521000. ^x̄2& f decreases asm̄x increases, and para

metric resonance cannot be expected form̄x*100 ~namely, for
mx*1015 GeV).
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V. THE COMBINED RESONANCE

In the previous two sections, we have shown that the n
minimal coupling will give rise to the parametric resonan
depending on the value of coupling constantj. Here we shall
investigate a combination ofg resonance andj resonance
~the combined resonance!. WhengÞ0, theg2^x2& term in
the equation for the inflaton field~2.13! becomes importan
at the final stage of the evolution and changes the effec
mass of the inflaton field. By this back reaction effect, t
production ofx particles is suppressed. Similarly, produc
x particles will affect the metric by the coupling between t
x and inflaton fields. However, first, in order to examine t
naive structure of the present system, we shall rewrite
equation for thex field under the condition ofg2^x2&!m2

andh!1. With Eqs.~3.1! and ~3.2!, the equation for thex
field is reduced to the form of the Mathieu equation~3.11!
with Eqs.~3.12!, ~3.15!, andq andp being defined as

q5
A~2p!21~g2F2/m212jk2F2!jk2F2

2~116jh!2
, ~5.1!

p5
1

4 S g2F2

m2
1jk2F22jk2F82D . ~5.2!

With the condition~3.17!, Ak andq are rewritten as

Ak'
k̄2

a2
12q

g2F2/m21jk2F2

ug2F2/m213jk2F2u

'
k̄2

a2
12q

g218pj~m/MPL!
2

ug2124pj~m/MPL!
2u

, ~5.3!

q'
1

4~116jh!2Ug2F2

m2
13jk2F2U

'
~MPL /m!2

48p3~116jh!2 t̄ 2 Ug2124pjS m

MPL
D 2U. ~5.4!

On the Mathieu chart, there are two quantities which d
termine the efficiency of the resonance. One is the ini
valueqi . This determines the Floquet index, i.e., the grow
rate of thex particle. It becomes large asg andj get large as
seen from Eq.~5.4!. In general, if we can neglect the bac
reaction effect, we expect more efficient resonance for la
qi . Another quantity is the gradient of the line on which th
variablesAk andq trace during the evolution of the system
It determines how many modes contribute to the resona
In the present case, the gradient is given by the ratio ofj to
g2. In the minimal coupling case,j50, so the typical line is
Ak52q. In the nonminimal case, however, there are seve
types of lines which show different behaviors. Then we sh
first classify the Mathieu chart into several regions by cha
ing j/g2 from ` to 2` ~see Fig. 8!. When j/g25`, the
resonance is similar to the positivej resonance discussed i
Sec. III. When 0,j/g2,`, the resonance occurs below th
Ak52q line. We call the resonance in this parameter reg
5-12
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the ‘‘new-broad resonance.’’ Whenj50, resonance occur
only by g coupling:Ak52q1 k̄2/a2 and the ordinaryg reso-
nance is recovered. Ifj becomes negative,Ak andq enter the
region ofAk.2q, and we call the resonance in this para
eter region ‘‘ordinary-broad resonance.’’ Whenj/g2

52(MPL /m)2/24p, q vanishes and no resonance occu
As j/g2 decreases further, the gradient gets smaller and
resonance becomes broader again. Whenj/g2

FIG. 8. The relation betweenAk andq in the case of the com
bined resonance ofg and j. ~a! As j/g2 decreases from̀ to

2(MPL /m)2/24p, the relation changes fromAk52q/31 k̄2/a2 to
q50 as the arrow in the figure. We call the resonance in e
parameter region the following. 0,j/g2,` is the new-broad reso
nance, and2(MPL /m)2/24p,j/g2,0 is the ordinary-broad reso
nance. ~b! As j/g2 decreases from2(MPL /m)2/24p to 2`,

the relation changes fromq50 to Ak522/3q1 k̄2/a2 as the arrow
in the figure shows. We call the resonance in each parameter re
the following. 2(MPL /m)2/16p,j/g2,2(MPL /m)2/24p
is the ordinary-broad resonance,2(MPL /m)2/12p,j/g2

,2(MPL /m)2/16p is the new-broad resonance, and2`,j/g2

,2(MPL /m)2/12p is the wide resonance.
06351
-
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52(MPL /m)2/16p, the typical line isAk52q, which is the
same as the ordinaryg resonance in spite of the existence
j coupling. The parameter range2(MPL /m)2/12p,j/g2

,2(MPL /m)2/16p, corresponds to the region betwee
Ak52q andAk52q/3, and the system enters the new-bro
resonance region again. Asj/g2 gets smaller further,Ak and
q enter the region ofAk,2q/3. We call the resonance in
this region the ‘‘wide resonance.’’ When j/g2

,2(MPL /m)2/8p, the gradient becomes negative.j/g2

52` corresponds to the negativej resonance discussed i
the previous section. In what follows, we will examine ea
of the cases one by one, in detail, paying attention to wh
parameter range inj coupling assists theg resonance.

Before proceeding to the individual investigation, w
shall give some criteria for the back reaction effect on
inflaton field and for the suppression effect by thejh term.

~1! For the back reaction effect on the inflaton field, w
shall adopt the criterion

g2^x̄2&&0.1. ~5.5!

If the ^x̄2& exceeds this criterion, the back reaction becom
important. In the case ofgÞ0,j50, our numerical analysis
shows that this criterion corresponds to the condition og
&331024.

~2! For thejh suppression effect, we adopt the criterio

jh&0.1. ~5.6!

We will see that those effects are crucial for the effect
x-particle creation at the final stage of preheating.

A. j>0 „new-broad resonance…

This case corresponds to the parameter range,

2

3
q1

k̄2

a2
,Ak,2q1

k̄2

a2
, ~5.7!

on the Mathieu chart@Fig. 8~a!#, and the resonance band
broad compared with the usualg-resonance case. We sha
discuss the following three cases separately.

1. g!331024 case

In the case wherej50, i.e., the ordinaryg resonance, the
width of the instability bands are small wheng!331024.
The x particles are actually created only in the first instab
ity band, and the resonance occurs in the narrow band f
the beginning. As a result, thex particle is not produced
efficiently. By takingj coupling into account, however, th
resonance is assisted since the initial value ofq becomes
larger and the resonance band becomes broader as seen
Eqs.~5.3! and ~5.4!. In order to obtain̂ x̄2& f;106, we need
the coupling constantj5100–200. Because the resonan
occurs mainly byj coupling, the properties of resonance a
almost the same as in theg50,j.0 case. For fixed valuej,
we find thatg makes the resonance band narrower and
resonance less effective, although it makes the initial va
of q larger. In fact, the numerical calculation shows th

h
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^x̄2& f with g is smaller than that withoutg and its growth rate

of ^x̄2& is also smaller. In this sense,g coupling weakens the
j resonance. In this parameter region, the back reaction
fect on the inflaton mass is negligible and the suppression
the jh term terminates thex-particle production.

2. g;331024 case

In this case, we find from Fig. 9 that the resonance
divided into two stages as in the ordinaryg resonance,
namely first the broad resonance regime and then the na
resonance regime. We add the suffix ‘‘b’’ on to the variables
just after the broad resonance regime ast̄ b andqb . Although
the resonance starts from the broad resonance region ev
the j50 case, the resonance band becomes broader by
ing the j coupling. Furthermore, the initial value ofq be-
comes large as seen in Eq.~5.4!. Since more modes contrib
ute to the resonance, both the growth rate of^x̄2& and the
value of ^x̄2&b get larger~see Fig. 9 and Table III!. This
means that thej coupling supports theg resonance well in
the broad resonance regime. After the resonance enter
narrow resonance regime (t̄'8), the growth rate hardly de
pends onj. At the final stage, however, we cannot negle
the suppression effect by thejh term. Asj becomes large
the variablesAk andq cross the lower boundary of the firs
instability band at an earlier time and the final value of^x̄2& f
is suppressed a little compared with that in the ordinarg
resonance. In this case, the back reaction effect is margin
less important.

3. g>331024 case

In this parameter region, the back reaction to the infla
field should be taken into consideration. In the case oj
50, x particles are produced quite effectively in the bro
resonance regimes and̂x̄2& f takes the maximal value

^x̄2&max'5.03107 for g'131023, in which case the initial
value ofq (qi'1.0753104) is large enough as estimated b
Eq. ~5.4!. As g increases, the back reaction termg2^x̄2&
gives a significant effect even when the small value of^x̄2&
and ^x̄2& f rather decreases. Even if we takej coupling into
account, it does not change the growth rate at the first s
of the resonance very much wheng is large~see Fig. 10!. For
example, in the case ofg51.031023 andj5100, the initial
value estimated by Eq.~5.4! is qi'1.0833104. This is al-
most same as the case ofj50. Furthermore, the relation
betweenAk and q is Ak'1.99q1 k̄2/a2, which shows also
the same broadness. Hence the initial stage of the reson
is governed by theg coupling. In order to find the effect o
the j coupling, we may setj very large (j*104 for g51
31023). Such a largej coupling, however, causes ex
tremely strong suppression and we do not expect the effic
resonance. In the final stage, either the suppression effec
jh or the back reaction effect terminates the resonance
pending on the coupling constantsg andj. Generally speak-
ing, whenj takes a large value, the suppression factor
comes important before the createdx particles cause the
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FIG. 9. The evolution of̂ x̄2& as a function oft̄ in the case of
g53.031024 @~a! j50, ~b! j550, and~c! j5100#. We find that
the resonance is divided into two stages; one of which is the
broad resonance stage and the other is the narrow one. The gr
rate in the broad resonance stage becomes larger for largerj. How-

ever, the final valuêx̄2& f is suppressed by thejh term.
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RESONANT PARTICLE PRODUCTION WITH . . . PHYSICAL REVIEW D60 063515
significant back reaction. Using the two criteria~5.5! and
~5.6!, we can estimate a rough dependence. Once the cre
particles exceed one of the criteria first, the resonance
terminate. Since the rhs of these criteria are the same, c
paring the lhs terms, two effects become equivalent whe

g258pS m

MPL
D 2

j2. ~5.8!

Hence, ifg2.8p(m/MPL)
2j2, the back reaction terminate

the resonance. Otherwise, the resonance is terminated b
suppression effect. This estimation has been confirmed
the numerical calculations. As a result, it is difficult to crea
x particles more than̂x̄2& f;5.03107 even if j coupling is
taken into account.

B. 2„M PL /m…

2/16p<j/g2<0 „ordinary-broad resonance…

As we can see by Eq.~5.3!, both terms ofg and j sup-
press the instability in this case. The gradient of theq-Ak line
becomes steep, and this parameter range corresponds
region between the line ofAk52q1 k̄2/a2 andAk axis in the
Mathieu chart. This means that the resonance occurs in
rower bands than that in the case ofj50. In particular, for
j/g252(MPL /m)2/24p, the variableq vanishes. Since the
width of any instability bands vanishes forAk.0, the reso-
nance does not occur at all although bothg coupling andj
coupling exist. As for the initial value ofq, both terms ofg
andj suppress it as seen from Eq.~5.4!. As a resultj cou-
pling always suppressesg resonance in any parameter rang
This effect is remarkable whenq is small. However, for large
g, j terms are negligible because both the gradient of
q-Ak line andqi depend on the square ofg while they de-
pend linearly onj. Hence the properties of the resonance
almost the same as those in the ordinaryg resonance ifg
.3.031024 and 0,uju,100.

C. 2„M PL /m…

2/12p<j/g2<2„M PL /m…

2/16p
„new-broad resonance…

This parameter range corresponds to the regions betw
Ak52q1 k̄2/a2 and Ak52q/31 k̄2/a2 on the Mathieu chart
@Fig. 8~b!#. The resonance gives the same broadness as

TABLE III. The numerical result for the broad resonance in t

g5331024 case.t̄ b and^x̄2&b are the values when the broad res

nance regime ends.^x̄2&b gets larger for largej because the reso

nance band becomes very broad. However,^x̄2& f turns out to be
smaller for largej because of the suppression effect, although
does not depend onj so much.

j t̄ b ^x̄2&b t̄ f ^x̄2& f

220 6.26 3.019 14.36 2.9513105

0 6.26 5.495 14.36 7.2443105

50 6.26 3.162310 12.85 6.3093105

100 6.26 2.3443102 11.88 4.5703105
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FIG. 10. The evolution of̂ x̄2& as a function oft̄ in the case of
g51.031023 @~a! j50, ~b! j550, and~c! j5100#. The broad and
narrow resonance stages are not distinguished. The growth rate
almost the same for eachj, because the resonance occurs mainly

g coupling. When̂ x̄2& reaches its maximal value, the back reacti
effect terminates the resonance.
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case discussed in Sec. V A. However, there is a differ
point in the efficiency of the resonance. In the present casq
evolves in the range of

1

~116jh!2

uju

6p2 t̄ 2
,q,

1

~116jh!2

uju

4p2 t̄ 2
. ~5.9!

Comparing this with Eq.~3.19! in the case of g50,
j.0, q in Eq. ~5.9! is smaller than that in the case o
g50 by a factor 2–3 for the fixed value ofuju. Remember-
ing that for g50,j.0 the value ofj must bej*100 to
achieve^x̄2& f;106, we can estimate thatuju is needed at
least uju*200 for the efficient resonance in the ca
of j/g2'2(MPL /m)2/12p. This means that the paramete
which cause the effective resonance are a little more res
tive than the j resonance discussed in Sec. III. In t
case ofj/g2'2(MPL /m)2/16p, q evolves on the lineAk

'2q1 k̄2/a2 and the broadness of the resonance band
similar to the ordinaryg resonance. For this reason, we ne
the value ofuju that is more than 10 000 for the effectiv
resonance, but such a largeuju causes strongjh suppression
and the final value of̂x2& is reduced. We show the numer
cal results on theAk52q/3 line in Table IV, which have
confirmed the above analysis. Ifuju is less than 100, the
resonance hardly occurs. For example, whenj52100 and
g56.14031025, the final value of̂ x̄2& is ^x̄2& f55.0310.
On the other hand, in the case ofj52200 andg57.089
31025, the final value iŝ x̄2& f51.03105. g resonance is in
fact assisted byj coupling in this case. However, it is diffi
cult to produce thex particles more than̂x̄2& f;106 in this
parameter range.

D. 2`<j/g2<2„M PL /m…

2/12p „wide resonance…

This parameter range corresponds to the regions betw
Ak52q/31 k̄2/a2 andAk522q/31 k̄2/a2 @Fig. 8~b!#. Since
the contribution from the negativej coupling surpasses theg
coupling, the resonance band becomes quite broad asj/g2

decreases. For2(MPL /m)2/8p,j/g2,2(MPL /m)2/12p,
the gradient of theq-Ak line is positive and the resonanc
terminates when the variablesq and Ak cross the lower
boundary of the first instability band as in the former cas
After the resonance terminates,^x̄2& decreases gradually b
adiabatic expansion. We show the result of the numer

TABLE IV. The numerical result for the new-broad resonan
on theAk52q/3 line on the Mathieu chart.g does not take a large
value for this parameter range ofj. The effective resonance is ex
pected only foruju.200.

j g ^x̄2& f

220 2.74531025

250 4.34131025

270 5.13731025

2100 6.14031025 5.012310
2200 7.08931025 1.0133105
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calculations in thej/g252(MPL /m)2/8p case, which cor-
respond toAk50, in Table V. In the case ofuju&50, reso-
nance does not occur because the initial value ofq is too

small. However, asuju becomes large,̂x̄2& f increases and

for j52200 and g57.08931025, ^x̄2& f51.03106.
From these results we can conclude that resonance is m
effective than the previous case.

When j/g2&2(MPL /m)2/8p, the q-Ak line passes
through the zeroth instability band near its boundary. Sin
the Floquet index is small there, it takes a long time to rea

the final value of̂ x̄2& even for the largeuju. ^x̄2& f is deter-
mined by the balance between the creation rate of thx
particle and the expansion rate of the Universe@Eq. ~4.8!#.
As j/g2 approaches2`, the properties of the resonance a
almost the same as in the case ofg50,j,0, and thenj
coupling assistsg resonance. Since the existence ofg cou-
pling makes the growth rate small for a fixed value ofj,
resonance is most efficient in the case ofg50.

E. Summary

We shall summarize the properties of the resonance
the suppression effect. On thej-g diagram ~Fig. 11!, we
show which suppression factor is significant in various co
pling regimes. We can easily find that the back reaction
fect is dominant in the case ofg*331024 and g*5
31026uju ~the lined region in Fig. 11!. However, in the case
of g&331024 and uju@1, the jh suppression effect be
comes more important. In fact,jh suppression appears eith
for j*100 or j/g2&20.1(MPL /m)2 ~the shaded region in
Fig. 11!. In the parameter range2(MPL /m)2/12p,j/g2

,2(MPL /m)2/16p ~new-broad resonance withj,0 case!,
however, althoughuju is of order 100, the effective
x-particle production will not be expected. In the regio
where the back reaction or suppression effect becomes
nificant, we may expect a large amount of particle prod
tion, although it will be reduced for extremely largeuju.

In Fig. 12, we show^x̄2& f in terms of j and g in the
three-dimensional plane. From this figure, we find three p
teaus; one corresponds to the back reaction region with la
g, and the other two correspond tojh suppression regions
shown in Fig. 11. ^x2& f takes the maximal value o

^x̄2&max'3.23108 at g&131025,j'24. In other regions,

TABLE V. The numerical result for the wide resonance on t
Ak50 line on the Mathieu chart. The resonance occurs mainly
the j coupling. The effective resonance is expected only foruju
.100.

j g ^x̄2& f

220 2.24131025

250 3.54531025 3.981
270 4.19431025 1.0163104

2100 5.01331025 3.2063105

2200 7.08931025 1.0473106
5-16
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RESONANT PARTICLE PRODUCTION WITH . . . PHYSICAL REVIEW D60 063515
we find that the numerical result agrees well with our ana
sis.

In this section, we have studied the combined resona
of g andj. Forg*331024, when the back reaction effect i
important, the final values of^x2& do not become larger tha
those of theg resonance significantly, even ifj coupling is
taken into account. This is due to both thejh suppression
and the back reaction. In the case thatuju is large as inuju
*100, thejh suppression effect becomes more import
than the back reaction. Forg&331024, g resonance is
sometimes assisted byj coupling. For example, for 100&j
&200 and2`,j/g2,2(MPL /m)2/16p, j coupling as-

FIG. 11. The structure of resonance, the back reaction,
jh suppression effects in terms ofj and g. The regions@A#,
@B#, @C#, @D# denote new-broad resonance (j.0), ordinary-broad
resonance @2(MPL /m)2/16p,j/g2,0#, new-broad resonanc
@2(MPL /m)2/12p,j/g2,2(MPL /m)2/16p#, wide resonance
@2`,j/g2,2(MPL /m)2/12p#, respectively. With this diagram
we easily understand the resonance structure. The lined reg
(g*331024 andg*531026uju) denote those where the back r
action effect is significant. The shaded regions@g&331024 and
either j*100 or j/g2&20.1(MPL /m)2] denote those wherejh
suppression effect becomes important.

FIG. 12. ^x̄2& f in terms ofj andg. We find three plateaus, on

of which ^x̄2& f takes the maximal valuêx̄2&max'3.23108 for g
&131025,j'24.
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sists g resonance. In particular, forg&131025, the reso-
nance structure is almost the same as in the case ofg50,j
Þ0, which means that it is essentially thej resonance.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper we have examined the properties of re
nance with a nonminimally coupled scalar fieldx in the pre-
heating phase. We have found that the effective resonan
possible only by a nonminimal couplingjRx2 in a certain
range of parameterj. In the case ofg50,j.0, the relation

of Ak andq in the Mathieu chart isAk52q/31 k̄2/a2 and the
resonance band becomes broader in comparison with tg

resonance (Ak52q1 k̄2/a2). This is due to the existence of

jk2ḟ2 term and the structure of resonance is different fro

that of theg resonance. Without thejk2ḟ2 term,j must be
larger than 104 for the effective resonance. However, as w
have shown here, the effective resonance is possible foj
;O(100). For example, in the case ofg50,j5100, we find
A^x2& f'1016 GeV, which is comparable to the case ofg
'331024,j50. The unique feature of thej resonance is
the existence of thejh suppression effect. Asj increases up
to about 100,̂x2& f also increases because thex field stays in
the broad resonance bands longer. However, whenj exceeds
about 100, thejh suppression effect by the production ofx
particles is significant and̂x2& f does not increase for th
case ofj*100. Rather, beyondj;200, ^x2& f decreases by
the jh suppression effect aŝx2& f}j23/2. In the case ofg
50,j.0, we find that the maximal value of̂x2& f is
A^x2&max'1016 GeV atj5100–200.

As for the case ofg50,j,0, the relation betweenAk and
q becomesAk522q/31 k̄2/a2 and the resonance band
further broader than the case ofg50,j.0. The important
difference from other cases is that theAk-q curve will pass
through the zeroth instability band below the curve ofAk
52q2/2. As a result, even ifq decreases under unity by th
expansion of the Universe, the modes close tok50 always
stay in the resonance band. In this case, we find the term
tion in the growth of^x2& at which the growing ratem of
^Y2& balances the expansion rate of the Universe. In
21&j&0 case, the increase of^x2& is not expected becaus
the Hubble expansion rate surpasses the growing rate. In
23&j&21 case, althougĥx2& increases with the passag
of time, it takes more time to reach its maximum becausem
is very small and resonance terminates before thejh sup-
pression effect becomes significant. Forj&23, ^x2& f
takes rather large values and^x2& f takes the maximal value
A^x2&max;231017 GeV whenj'24. Asj decreases from
j&24, although the growth ratem increases, the final fluc
tuation of thex particle decreases. This is because thejh
suppression effect due tox-particle production plays a cru
cial role in terminating the resonance. As a result,^x2& f de-
creases asuju23/2 for uju@1. We should also note that th
value of A^x2&max in the case ofg50,j,0 is greater than
that in the case ofg50,j.0. This is because the resonan
bands forj,0 are broader than those forj.0.

We have also studied the combined resonance of inte
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tions g2f2x2 andjRx2. The structure of resonance is qui
different depending on the two parameters ofg andj. What
we had been interested in is whetherj coupling assistsg
resonance in any case. However, we find that this is not
case. Forg*331024, and back reaction effect on the infla
ton field and metric is important,g resonance is not assiste
by j coupling because of thejh suppression effect as well a
the back reaction effect at the final stage of preheating. In
parameter range wherex particles are significantly produce
only by g resonance, the maximal value of^x2& f does not
increase even if we include thej coupling. On the other
hand, in the case ofg&331024, j coupling may assistg
resonance in the parameter ranges of 100&j&200 and2`
,j/g2,2(MPL /m)2/16p. In particular, for g&131025,
the structure of resonance is almost the same as the case
g50,jÞ0, and it is essentially thej resonance. We find tha
the maximal value ofA^x2& f is about 231017 GeV for g
&131025,j'24, which is larger than the minimally
coupled case withg'131023.

There are several things we did not investigate in t
paper. One of them is the rescattering effect. Asx particles
are produced significantly, the fluctuations of the inflat
field are also generated and would affect the production ox
particles. Although it is expected that the structure of re
nance does not change so much at the first stage of pre
ing, the rescattering effect will modify the final production
x particles because it becomes important at the final stag
preheating whenx particles are significantly produced. Asf
particles are created, spatial inhomogeneity of thef field
would prevent the resonant production ofx particles, result-
ing in h5jk2^x2& being reduced. Then we may find eith
insufficient production ofx particles or the same amount o
x particles with a delay of time to reach the limiting valu
due to thejh suppression. As forf-particle creation through
the present coupling, we did not investigate the details
present. For a complete study of preheating, however,
should consider the growth off particles due to the resca
tering effect quantitatively beyond the mean-field appro
mation.

We did not consider the case when the couplingg2 be-
e
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tweenf and x is negative, although it was pointed out
@29# that the production ofx particles increases significantl
compared with the positive coupling case. This is similar
the geometric reheating with negativej in the sense thatAk
can take a negative value in the Mathieu chart. It may
interesting to study the combined resonance of negativeg2

andj.
In this paper, we have also not studied the metric per

bation in the preheating phase. However, several auth
pointed out that metric perturbation is influenced by the pa
metric resonance@30–33#. It was recognized the Bardee
parameter is a well conserved quantity in the reheating ph
except the short period whenḟ is close to zero@30,33#. On
the other hand, Bassettet al. @32# recently found that the
rapid growth of metric perturbation by negative coupling i
stability is expected and this stimulates the growth of
scalar field. It is worth investigating whether the growth
metric perturbation enhances the fluctuation of thex field
nonminimally coupled to the spacetime curvatureR with j
,0.

We have studied a parametric resonance byj coupling
(jRx2) as well asg interaction (g2f2x2). Although we ex-
pect that any scalar field will couple to the spacetime cur
ture R through quantum effects, the value ofj considered
here may be too large. However, in other theories of grav
such as the Brans-Dicke theory@34#, the induced gravity
@35#, and the higher-curvature theories@36#, we may have
different types of coupling to the spacetime curvature, wh
might give a natural mechanism for an effective resonan
These issues are under investigation.
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